• 제목/요약/키워드: Phosphoric acid concentration

검색결과 144건 처리시간 0.025초

Moringa Oleifera, A Biosorbent for Resorcinol Adsorption-Isotherm and Kinetic Studies

  • Kalavathy, M. Helen;Swaroop, G.;Padmini, E.;Lima Rose, Miranda
    • Carbon letters
    • /
    • 제10권1호
    • /
    • pp.23-32
    • /
    • 2009
  • The adsorption of phenolic compound resorcinol on activated carbons prepared from Moringa oleifera (Drumstick bark) has been investigated. Activated carbon was prepared by impregnating Moringa oleifera with 50% phosphoric acid in the ratio of 1:1 and 1:2(w/w), designated as MOAC1 and MOAC2. Equilibrium and isotherm studies were carried out. The influences of variables such as contact time, initial concentration of resorcinol, carbon dosage in the solution on percentage adsorption and adsorption capacity of the bark have been analysed. The equilibration time was found to be 4 h. Kinetics of resorcinol onto activated carbons was checked for pseudo first order and pseudo second order model. It was found that the adsorption of resorcinol follows pseudo second order kinetics for both MOAC1 and MOAC2. The isotherm data were correlated with isotherm models, namely Langmuir and Freundlich. Adsorption isotherms were satisfactorily fitted by both the Langmuir and Freundlich model for MOAC1 and MOAC2.

양극산화에 의한 다공성 알루미나 막의 제조시 전해질의 영향 (Effect of Electrolyte on Preperation of Porous Alumina Membrane by Anodic Oxidation)

  • 이창우;함영민;강현섭;장윤호
    • 공업화학
    • /
    • 제9권7호
    • /
    • pp.1047-1052
    • /
    • 1998
  • 본 연구에서는 시판용 99.8% 금속알루미늄을 정전류 방식을 이용하여 황산, 수산, 인산 및 크롬산 전해조에서 양극산화를 행하여 다공성 알루미나 막을 제조하였다. 양극산화시 전해액의 종류에 따른 반응온도, 전해액의 농도 및 전류밀도에 따라 형성되는 다공성 알루미나 막의 세공직경과 분포, 막의 두께 및 형태와 결정구조를 조사함으로서 각 전해질 용액하에서의 최적 반응조건을 결정하고 우수한 다공성 알루미나 막을 제조하고자 하였다. 황산, 수산전해질하에서는 한외여과(Ultrafiltration)막이, 인산, 크롬산전해질하에서는 정밀여과(Microfiltration)막의 얻어짐을 알수 있었다. 황산, 수산 및 인산 전해조에서 제조된 막의 결정구조는 무정형임을 알 수 있으며, 크롬산 전해조에서 제조된 막은 ${\gamma}-Al_2O_3$의 결정구조를 보이고 있다.

  • PDF

Removal of Pesticide (Endosulphan) from Water via Adsorption onto Activated Carbons Developed from Date Pits

  • Ashour, Sheikha.S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.101-107
    • /
    • 2007
  • Activated carbons were prepared by impregnation of crushed clean date pits in concentrated solutions of phosphoric acid or zinc chloride followed by carbonization in absence of air at $600^{\circ}C$. Steam-activated carbon was prepared by gasifying $600^{\circ}C$-carbonization product at $950^{\circ}C$ to a burn-off = 50%. KOH- activated carbon was prepared by impregnating date pitscarbonization product obtained at $450^{\circ}C$ in concentrated KOH solution followed by carbonization at $840^{\circ}C$. Textural properties of these carbons were determined from nitrogen adsorption at $-196^{\circ}C$ and the chemistry of the carbon surface was investigated by determination and of the surface carbon-oxygen (C-O) groups using bases of variable strength and dilute HCl. The adsorption of endosulphan at $27^{\circ}C$ on all the carbons prepared was undertaken. Adsorption of this pesticide at 32 and $37^{\circ}C$ was also undertaken for steam-activated and KOH-activated carbons. Phosphoric acid-activated carbons and steamactivated carbons are mainly microporous and have high surface concentration of C-O groups of acidic nature. Steamactivated and KOH-activated carbons exhibited surface areas > 1000 $m^2/g$ and contain micro and non-micrpores. The adsorption of endosulphan was related to the surface area of non-micropores and was retarded by the high concentration of surface C-O groups. The thermodynamic properties indicated the feasibility of the adsorption process and the possible regeneration of the carbon for further use.

Hevea brasiliensis - A Biosorbent for the Adsorption of Cu(II) from Aqueous Solutions

  • Sivarajasekar, N.
    • Carbon letters
    • /
    • 제8권3호
    • /
    • pp.199-206
    • /
    • 2007
  • The activated carbon produced from rubber wood sawdust by chemical activation using phosphoric acid have been utilized as an adsorbent for the removal of Cu(II) from aqueous solution in the concentration range 5-40 mg/l. Adsorption experiments were carried out in a batch process and various experimental parameters such as effect of contact time, initial copper ion concentration, carbon dosage, and pH on percentage removal have been studied. Adsorption results obtained for activated carbon from rubber wood sawdust were compared with the results of commercial activated carbon (CAC). The adsorption on activated carbon samples increased with contact time and attained maximum value at 3 h for CAC and 4 h for PAC. The adsorption results show that the copper uptake increased with increasing pH, the optimum efficiency being attained at pH 6. The precipitation of copper hydroxide occurred when pH of the adsorbate solution was greater than 6. The equilibrium data were fitted using Langmuir and Freundlich adsorption isotherm equation. The kinetics of sorption of the copper ion has been analyzed by two kinetic models, namely, the pseudo first order and pseudo second order kinetic model. The adsorption constants and rate constants for the models have been determined. The process follows pseudo second order kinetics and the results indicated that the Langmuir model gave a better fit to the experimental data than the Freundlich model. It was concluded that activated carbon produced using phosphoric acid has higher adsorption capacity when compared to CAC.

Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

  • Dohare, Rajeev K.;Agarwal, Vishal;Choudhary, Naresh K.;Imdad, Sameer;Singh, Kailash;Agarwal, Madhu
    • Membrane and Water Treatment
    • /
    • 제13권4호
    • /
    • pp.201-208
    • /
    • 2022
  • Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).

박막 알루미늄을 이용한 규칙적으로 정렬된 나노급 미세기공 어레이 제조기술 개발 (Development of Fabrication Technique of Highly Ordered Nano-sized Pore Arrays using Thin Film Aluminum)

  • 이재홍;김창교
    • 한국전기전자재료학회논문지
    • /
    • 제18권8호
    • /
    • pp.708-713
    • /
    • 2005
  • An alumina membrane with nano-sized pore array by anodic oxidation using the thin film aluminum deposited on silicon wafer was fabricated. It Is important that the sample prepared by metal deposition method has a flat aluminum surface and a good adhesion between the silicon wafer and the thin film aluminum. The oxidation time was controlled by observation of current variation. While the oxalic acid with 0.2 M was used for low voltage anodization under 100 V, the chromic acid with 0.1 M was used for high voltage anodization over 100 V. The nano-sized pores with diameter of $60\~120$ nm was obtained by low voltage anodization of $40\~80$ V and those of $200\~300$ nm was obtained by high voltage anodization of $140\~200$ V. The pore widening process was employed for obtaining the one-channel with flat surface because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. Finally, the sample was immersed to the phosphoric acid with 0.1 M concentration to etching the barrier layer.

방사선 그라프트 공중합에 의한 인산기를 갖은 폴리프로필렌 부직포 흡착제의 제조 및 구리, 납, 및 코발트 이온의 흡착 (Preparation of Polypropylene Fabric Adsorbent Containing Phosphoric Acid by Radiation-Induced Graft Copolymerization, and Adsorption of $Cu^{2+}$, $Pb^{2+}$ and $Co^{2+}$)

  • 박근수;장주환;김학진;최성호;노영창
    • 분석과학
    • /
    • 제12권1호
    • /
    • pp.7-12
    • /
    • 1999
  • 방사선 전조사 그라프트 중합법을 이용하여 폴리프로필렌 부직포에 Glycidyl methacrylate(GMA)를 그라프트 시킨 후, Phosphoric acid를 반응시켜서, 양 이온성 흡착제를 제조하고, $Pb^{2+}$, $Cu^{2+}$$Co^{2+}$이온에 대한 양이온성 흡착제의 흡착특성에 대하여 검토하였다. 그라프트 반응에서, 그라프트율은 조사량, 반응시간, 그리고 온도가 증가함에 따라서 증가하였다. 또한, 용매에 대한 GMA의 농도의 비가 60%인 경우 그라프트율이 최대가 되었다. 인산화 반응에서 인산기의 함량은 85%의 인산용액에서 2.5-3.5 mmol/g 이었다. 흡착실험에서, 2.9 mmol/g 인산기를 갖는 양이온성 흡착제의 흡착량은, $Co^{2+}$에서, Kg당 75.5g 이었고, $Cu^{2+}$의 경우, Kg당 36.6g 이었으며, $Pb^{2+}$에서는 Kg당 79.0g 이었다. 인산기를 함유한 양이온성 흡착제의 흡착량은 $Pb^{2+}$>$Co^{2+}$>$Cu^{2+}$ 순으로 흡착되었다.

  • PDF

농작물(農作物)에 대(對)한 납(pb)의 흡수(吸收) 및 피해경감(被害輕減)에 관(關)한 연구(硏究) -II. 석회(石灰)와 인산물질시용(燐酸物質施用)이 토양중(土壤中) 납(pb) 용출량(溶出量)에 미치는 영향(影響) (Studies on Uptake by Crops of Lead and Reduction of it's Damage -II. Effect of application of calcium and phosphate materials on Pb Solubility in Soil)

  • 김규식;김복영;한기학
    • 한국토양비료학회지
    • /
    • 제19권3호
    • /
    • pp.217-221
    • /
    • 1986
  • 토양중(土壤中)에서 납(Pb)의 용출경감효과(溶出輕減效果)를 구명(究明)하기 위(爲)하여 토양(土壤)에 납을 $PbCl_2$로 310.8ppm 처리(處理)하고 경감제(輕減劑)로서 소석회(消石灰), 석고(石膏), 과석(過石), 인산(燐酸)을 처리(處理)하여 담수후(湛水後) 실온(室溫)에 보관(保管)하면서 납 용출량(溶出量) 및 Ca, $PO_4$, $SO_4$와 pH, Eh를 측정(測定)한 결과(結果)는 다음과 같다. 1. 납 용출량(溶出量)은 경감제시용량(輕減劑施用量)이 증가(增加)할수록 감소(減少)되었으며 $H_3PO_4$ 및 과석(過石)이 용출억제효과(溶出抑制效果)가 좋았다. 2. 토양(土壤)의 pH는 소석회(消石灰)가 높고 인산구(燐酸區)가 낮으며 토양(土壤)의 Eh는 반대(反對)의 경향(傾向)이었다. 3. 토양중(土壤中)의 수용성(水溶性) Ca, $PO_4$$SO_4$ 함량(含量)은 경감제(輕減劑) 시용량(施用量)이 증가(增加)할수록 증가(增加)되었다. 4. 시험후(試驗後) 토양(土壤)의 가용성(可溶性) 납함량(含量)은 과석(過石), 인산(燐酸), 소석회(消石灰), 석고(石膏), 대조(對照)의 순(順)으로 낮은 경향(傾向)이었다.

  • PDF

4,5-Diphenyl-Imidazolone의 合成 及 螢光效果에 關한 硏究 (Synthesis of 4,5-Diphenyl Imidazolone and Studies on its Fluorescent Effect)

  • 전풍진;김형숙
    • 대한화학회지
    • /
    • 제4권1호
    • /
    • pp.70-77
    • /
    • 1957
  • 4,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 904,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}$. Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85.%. Reaction temperature 150∼110$^{\circ}$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 704,5-Diphenyl Imidazolone is synthesized from Benzoin, Urea, and Acetic acid catalyser. Nowadays, it is being used as an optical bleaching agent for wool and nylon textiles. Up to now, only one process of synthesis has been known. In order to find out the best conditions governing the yield were examined under various catalysers and conditions. In this experiment, the summary of results were as follows. a. On Acetic acid catalyser. The maximum yield conditions were mol ratio (Benzoin: Urea: Acetic acid) 1 : 2 : 14, Acetic acid concentration 99.9%. Reaction temperature 115$^{\circ}C$. . Under reaction time of 2 hours, above yield was 96.4%. b. On Mineral acid Catalyser. In using of Sulfonic acid, the color of solution was changed dark purlish black. With other mineral acid catalysers, in spite of increasing of temperature, it was proved that Benzoin floats on the solution, so that this reaction could not be continue. c. On Phosphoric acid catalyser. It was made clear that it can not be used for this reaction. d. On Sodium hydroxide catalyser. As one of Alkali catalyser, Sodium hydroxide was examined but this was unsuitable substance for this reaction. e. On Formic acid catalysers. The maximum yield conditions were mol ratio (Benzoin: Urea: Formic acid) 1: 2: 30. Formic acid concentration 85%. Reaction temperature 150∼110$^{\circ}C$. Under reaction time of 90 minutes, the best yield was 87%. Hereby, it was proved that organic acids such as Acetic acid and Formic acid can be used. When using Acetic acid, the yield was better than Formic acid, but it takes longer reaction time than Formic acid. About the fluorescent effect, the temperature of dye-bath must not be over 90$^{\circ}C$. and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes. . and dye-time 15 minutes. . and the ratio of 4,5-Diphenyl Imidazolone and water should be from 1:50000. to 1:10000. It proved that the best effect on textiles, and the best condition were dye-temperature near 70$^{\circ}C$. and dye-time 15 minutes.

  • PDF

과산화수소가 함유된 저산도 질산용액에서 DEHPA 추출제에 의한 Np의 추출거동 (Extraction Behaviour of Np with DEHPA from the Low Nitric Acid Solution Containing Hydrogen Peroxide)

  • 이일희;양한범;김광욱;임재관;유재형
    • 공업화학
    • /
    • 제7권4호
    • /
    • pp.707-714
    • /
    • 1996
  • 본 연구는 Np의 환원제로 $H_2O_2$가 함유된 1M 이하의 저산도 질산용액으로부터 DEHPA(di-(2-ethyhexyl)phosphoric acid) 추출제에 의한 Np의 추출 및 역추출 조건 설정과 추출속도 향상에 주안점을 두어, 회분식으로 실험을 수행하였다. 저산도 질산용액에서 Np의 산화상태는 주로 Np(V)로 존재하고 있음을 확인하였으며, Np의 추출율은 $H_2O_2$ 농도 및 DEHPA의 농도 증가에 따라 증가하고, 질산농도 증가에 따라 급격히 감소하였다. 제3의 산화/환원제가 첨가되지 않는 경우 추출율은 약 70% 정도로 다소 낮지만, DEHPA에 의해 추출이 가능함을 보았다. 또한 추출속도는 $H_2O_2$ 농도의 0.516 승에 비례하며, 질산농도의 0.483 승에 반비례하고 있는 다음과 같은 식을 얻었다. $d[Np(V)]/dt=-1.391{\times}10^{-2}[H_2O_2]^{0.516}[HNO_3]^{-0.483}[Np(V)]$ 그리고 과산화수소의 첨가 유무에 관계없이, 유기상으로 추출된 Np은 옥살산(oxalic acid)에 의해 효과적으로 역추출되었으며, 0.5M 옥살산으로 약 92% 이상을 역추출하였다.

  • PDF