• 제목/요약/키워드: Phosphorescent Material

검색결과 107건 처리시간 0.028초

인광물질 인 Ir(PPy)$_3$를 이용한 유기전기발광소자의 효율 개선에 관한 연구 (A Study on the improvement in efficiencies of Organic-Light Emitting Devices Using the Phosphor, Ir(PPy)$_3$)

  • 김준호;김윤명;구자룡;이한성;하윤경
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.178-181
    • /
    • 2001
  • The organic light-emitting devices (OLEDs) based on fluorescence have low efficiencies due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100 %, compared to 25 % in the case of the fluorescent material. Thus, the phosphorescent OLEDs have recently been extensively studied and showed higher internal quantum efficiencies then the conventional OLEDs. In this study, we investigated the characteristics of the phosphorescent OLEDs, with the green emitting phosphor, Ir(ppy)$_3$ (tris(2-phenylpyridine)iridium). The devices with a structure of ITO/TPD/Ir(PPy)$_3$ doped in the host material/BCP/Alq$_3$/Li:Al/Al were fabricated, and its electrical and optical characteristics were studied. By changing the doping concentration of Ir(PPy)$_3$ and the host materials, we fabricated several devices and investigated the device characteristics.

  • PDF

투명 금속 음극을 이용한 녹색 인광 OLED의 특성 (Characteristic of transparent OLED using transparent metal cathode with green phosphorescent dopant)

  • 윤도열;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.154-154
    • /
    • 2010
  • We have developed transparent OLED with green phosphorescent doped layer using transparent metal cathode deposited by thermal evaporation technique. Phosphorescent guest molecule, $Ir(ppy)_3$, was doped in host mCP for the green phosphorescent emission. Ca/Ag double layers were used as a cathode material of transparent OLED. The turn-on voltage of OLED was 5.2 V. The highest efficiency of the device reachs to 31 cd/A at 2 mA/$cm^2$.

  • PDF

인광재료를 이용한 고효율 적색 유기발광 다이오드에 관한 연구 (A Study on the High-Efficiency Red OLEDs using Phosphorescent Materials)

  • 심주용;전현성;조재영;정진하;윤석범;강명구;오환술
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 하계학술대회 논문집 Vol.7
    • /
    • pp.428-429
    • /
    • 2006
  • In this thesis, verifies electrical-optical characteristics of phosphorescent materials. basic structure of fabricating devices is glass/ITO/$\alpha$-NPD($300{\AA}$)/CBP:Guest($300{\AA}$)/BCP($80{\AA}$)/$Alq_3(100{\AA})$/Al($1000{\AA}$). In efficiency, fabrication of organic light emitting diodes using $Ir(btp)_2acac$ phosphorescent material is external quantum efficiency 0.268% as doping concentration 3%. At CIE coordinates, phosphorescent material $Ir(btp)_2acac$ following materials moves high purity red color(x=0.6686, y=0.3243). The brightness shows $285cd/cm^2$.

  • PDF

부분 도핑을 이용한 단순구조 청색인광 OLED 특성 (Characteristics of blue phosphorescent OLED with partially doped simple structure)

  • 김태용;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.156-156
    • /
    • 2010
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (OLED) with simplified architectures using blue phosphorescent material. The basis device structure of the blue PHOLED was anode / emitting layer (EML) / electron transport layer (ETL) / cathode. The dopant was partially doped into the host layer for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs.

  • PDF

투명 금속 음극을 이용한 전면발광 적색 인광 OLEDs의 전기 및 광학적 특성 (Electrical and Optical Properties of Red Phosphorescent Top Emission OLEDs with Transparent Metal Cathodes)

  • 김소연;하미영;문대규;이찬재;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.802-807
    • /
    • 2007
  • We have developed red phosphorescent top emission organic light-emitting diodes with transparent metal cathodes deposited by using thermal evaporation technique. Phosphorescent guest molecule, BtpIr(acac), was doped in host CBP for the red phosphorescent emission, Ca/Ag, Ba/Ag, and Mg/Ag double layers were used as cathode materials of top emission devices, which were composed of glass/Ni/2TNATA(15 nm)/${\alpha}$-NPD(35 nm)/CBP:BtpIr(acac)(40 nm, 10%)/BCP(5 nm)/$Alq_3$(5 nm)/cathodes. The optical transparencies of these metal cathodes strongly depend on underlying Ca, Ba, and Mg layers. These layers also strongly affect the electrical conduction and emission properties of the red phosphorescent top emission devices.

PVK Host를 이용한 청색인광 OLED의 특성 (Characteristics of blue phosphorescent OLED with PVK host layer.)

  • 이선희;조민지;문대규
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.153-153
    • /
    • 2010
  • We have developed blue phosphorescent organic light emitting diode using spin-coated poly(9-vinylcarbazole) (PVK) host layer doped with blue phosphorescent material, Iridium(III) bis(4,6-difluorophenyl)-pyridinato-N,C2) picolinate (FIrpic). the concentration of FIrpic dopants was varied from 2% to 10%. The electrical and optical characteristics of the blue phosphorescent OLED with PVK:FIrpic layer were investigated.

  • PDF

High efficiency deep blue phosphorescent organic light emitting diodes using a phenylcarbazole type phosphine oxide as a host material

  • Jeon, Soon-Ok;Yook, Kyoung-Soo;Lee, Jun-Yeob
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.188-191
    • /
    • 2009
  • A high efficiency deep blue phosphorescent organic light-emitting diode (PHOLED) was developed using a new wide triplet bandgap host material (PPO1) with a phenylcarbazole and a phosphine oxide unit. The wide triplet bandgap host material was synthesized by a phosphornation reaction of 2-bromo-Nphenylcarbazole with chlorodiphenylphosphine. A deep blue emitting phosphorescent dopant, tris((3,5-difluoro-4-cyanophenyl)pyridine)iridium (FCNIr), was doped into the PPO1 host and a high quantum efficiency of 17.1 % and a current efficiency of 19.5 cd/A with a color coordinate of (0.14,0.15) were achieved in the blue PHOLED. The quantum efficiency of the deep blue PHOLED was better than any other quantum efficiency value reported up to now.

  • PDF

적색과 청색 인광 소재를 이용한 백색 유기 발광 소자에 관한 연구 (White Organic Light-emitting Diodes using red and blue phosphorescent materials)

  • 박정현;최학범;김구영;이석재;서지현;서지훈;김영관
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.64-65
    • /
    • 2007
  • High-efficiency white organic light-emitting diodes (WOLEDs) were fabricated with two emissive layers and exciton blocking layer was sandwiched between two phosphorescent dyes which were, bis(3,5-Difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl) iridium III (Flrpic) as blue emission and a newly synthesized red phosphorescent material guest, Bis(5-benzoyl-2-phenylpyridinato-C,N)iridium(III) (acetylacetonate) ((Bzppy)2Ir(III)acac). This exciton blocking layer prevents a triple-triple energy transfer between the two phosphorescent emissive layers with balanced emission of blue and red. The white device showed the Commission Internationale d'Eclairage (CIEx,y) coordinates of (0.34, 0.40) at the maximum luminance of $24100\;cd/m^2$ and maximum luminous efficiency of 22.4 cd/A, respectively.

  • PDF

축광재료를 부착한 계단의 피난유도에 관한 연구 (A Study about the Evacuation Guidance that Used Phosphorescent Material for Stairs)

  • 허만성;등전황홍;미등상
    • 한국화재소방학회논문지
    • /
    • 제22권1호
    • /
    • pp.29-36
    • /
    • 2008
  • 본 연구는 화재시 연기발생 또는 정전이 발생한 경우 계단을 통해 안전하게 피난할 수 있도록 축광재료를 부착한 계단의 피난유도에 관하여 조사하였다. 실험조사는 설계 제작된 계단에 35명(1차 20명, 2차 15명)의 학생이 참여하여 계단의 시인성(visibility), 오르내림의 편리성과 안심감에 대하여 실험을 실시하였다. 실험 조사결과 축광재료를 사용한 계단코는 정전시에도 계단의 단 높이 확인이 가능하여 계단 오르내릴 때 편리하고 안심할 수 있기 때문에 어두운 곳에서 사람이 피난 행동할 때에 매우 효과적이었다. 따라서 계단코와 계단참에 축광재료를 설치하면 정전이 되더라도 평소와 다름없이 피난을 할 수 있을 것으로 판단된다.

Device Characteristics of white OLED using the fluorescent and phosphorescent materials coupled with interlayer

  • Lee, Young-Hoon;Kim, Jai-Kyeong;Yoo, Jai-Woong;Ju, Byeong-Kwon;Kwon, Jang-Hyuk;Jeon, Woo-Sik;Chin, Byung-Doo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1437-1439
    • /
    • 2007
  • We fabricated white organic light emitting device (WOLED) with the layered fluorescent blue material and phosphorescent green/red dye-doped materials. Addition of the non-doped phosphorescent host material between the fluorescent and phosphorescent light emitting layers provided the result of broadband white spectrum, with improved balance, higher efficiency, and lower power consumption. In our devices, there was no need of exciton-blocking layer between the each emission layer for the further confinement of the diffusion of excitons.

  • PDF