• Title/Summary/Keyword: Phosphor property

Search Result 92, Processing Time 0.028 seconds

Zn2SiO4:Mn Phsophor Particles Prepared by Flame Spray Pyrolysis (화염분무열분해 공정에 의해 합성되어진 Zn2SiO4:Mn 형광체)

  • Kang Y. C.;Sohn J. R.;Jung K. Y.
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.600-606
    • /
    • 2004
  • $Zn_{2}SiO_{4}:Mn$ phosphor particles were prepared by a flame spray pyrolysis method. It has been generally known that the high-temperature flame enables fast drying and decomposition of droplets. In the present investigation, the morphology and luminescent property of $Zn_{2}SiO_{4}:Mn$ phosphor were controlled in a severe flame preparation condition. The particle formation in the flame spray pyrolysis process was achieved by the droplet-to-particle conversion without any evaporation of precursors, which made it possible to obtain spherical $Zn_{2}SiO_{4}:Mn$ particles of a pure phase from a droplet. Using colloidal solutions wherein dispersed nano-sized silica particles were adopted as a silicon precursor. $Zn_{2}SiO_{4}:Mn$ particles with spherical shape and filled morphology were prepared and the spherical morphology was maintained even after the high-temperature heat treatment, which is necessary to increase the photoluminescence intensity. The $Zn_{2}SiO_{4}:Mn$ particles with spherical shape, which were prepared by the flame spray pyrolysis and posttreated at $1150^{\circ}C$, showed good luminescent characteristics under vacuum ultraviolet (VUV) excitation.

The Origin of Change in Luminescent Properties of ZnMgS:Mn Thin Film Phosphor with Varying Annealing Temperature

  • Lee, Dong-Chin;Kang, Jong-Hyuk;Jeon, Duk-Young;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1576-1579
    • /
    • 2005
  • With varying rapid thermal annealing (RTA) temperature, luminescence properties of $Zn_{0.75}Mg_{0.25}S:Mn$ thin film deposited by RF-magnetron sputtering technique were investigated. In this study, $Zn_{0.75}Mg_{0.25}S:Mn$ thin film phosphor showed more red emission than those of the previous studies when annealed around 600 or $650^{\circ}C$. Although all samples were deposited from identical source composition, a main peak wavelength of photoluminescence spectra of $Zn_{0.75}Mg_{0.25}S:Mn$ shifted toward shorter wavelengths depending upon increase of RTA temperature. The same dependence of wavelength on RTA temperature was also observed in cathodoluminescence as well as electroluminescence measurements. It was revealed that the change of the luminescence properties were originated from structural changes in $Zn_{0.75}Mg_{0.25}S:Mn$ thin film phosphor from cubic to hexagonal phases analyze using conventional X-ray pole figure mapping. The phase transition would be the origin of luminescence property changes with respect to RTA temperature.

  • PDF

Photoluminescence and Thermal Characteristics of SrAl2O4:Eu+2, Dy+3 Phosphors Synthesized with Various Aluminum Compounds (SrAl2O4:Eu+2, Dy+3 장잔광 형광체 합성에 있어서 알루미늄 화합물에 따른 열적거동 및 발광특성 변화)

  • Lee, Young-Ki;Lee, You-Kee
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.612-617
    • /
    • 2007
  • Both photoluminescence and thermal characteristics for $SrAl_2O_4:Eu^{+2},\;Dy^{+3}$ phosphors synthesized with various aluminum compounds (${\alpha}-Al_2O_3$, ${\gamma}-Al_2O_3$, amorphous-$Al_2O_3$ and $Al(OH)_3)$ were investigated in this study. The formation temperature of the host $SrAl_2O_4$ crystal is changed by these various aluminum compounds, as a result of the different thermal decomposition temperature of $SrCO_3$ phase. Among these compounds, the amorphous-$Al_2O_3$ phase shows the lowest formation temperature of the host $SrAl_2O_4$ crystal. The PL emission and excitation spectra of $SrAl_2O_4:Eu^{+2},\;Dy^{+3}$ phosphor are not affected by these aluminum compounds. After the removal of the Xenon lamp excitation (360 nm), however, the excellent longphosphorescent property of the phosphor is obtained by the amorphous-$Al_2O_3$ phase, although the decay time for all phosphors decrease exponentially.

Synthesis and Characteristic of BaMgAl10O17:Eu2+ Phosphor by SHS (자전연소 합성법을 통한 BaMgAl10O17:Eu2+ PDP용 청색형광체의 합성과 특성)

  • Lee Jong Eun;Kim Byeong Beom;Park Yeong Cheol;Won Chang Whan
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.885-888
    • /
    • 2004
  • $BaMgAl_{10}O_{17}:Eu^{2+}$ for PDP blue phosphor was synthesized using SHS(Self-propagating High temperature Synthesis) method. While Al metal powder was oxidized in this combustion, $Eu_{2}O_3$ was reduced to Eu2+. Therefore the mole ratio of $Al/Al_{2}O_3$ is one of the most important variable of the reaction. When $Al/Al_{2}O_3$ is 2.5/3.75, it has not only appropriate temperature and reaction velocity, but also excellent luminescent property. The sample synthesized in this system has similar characteristics comparing to sample using conventional solid-state reaction.

A Study on Emission Property of Powder Electroluminescent Device at Common use Frequency(60Hz) (상용주파수(60Hz)에서의 후막 전계광소자의 발광 특성에 관한 연구)

  • Oh, Joo-Youl;Park, Young-Soon;Jeong, Byoung-Sun;Lee, Jong-Chan;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.779-782
    • /
    • 1998
  • Electroluminescence is occurred by electric filed located in the phosphor. Until now most of EL researched have been studied the characteristics of devices that drive over 400Hz and commercialized, but in Problems of life time, natural aging increased with behavior of high frequency in the phosphor. In this paper, we investigated the luminescence characteristics were driven by low frequency($0{\sim}100Hz$). Moreover, we Presented the improvement way in the method device production and drive power as measurement at commercial frequency(60Hz).

  • PDF

Preparation and Characterization of Europium-doped Gadolinium Oxide Phosphors Using Oxalate Coprecipitation Method

  • Park, In-Yong;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.177-182
    • /
    • 2010
  • To synthesize $Gd_2O_3:Eu^{3+}$ phosphor, gadolinium-europium oxalate precursors were prepared from oxalic acid, NaOH or aqueous ammonia via coprecipitation method. The obtained precursors were heat-treated and then characterized by XRD, SEM and PL. The kinds and amounts of coprecipitant (NaOH or aqueous ammonia) were found to affect the powder morphology and properties of gadolinium-europium oxalate precursors. Two crystalline precursors and one amorphous precursor were synthesized. The nanometer-sized amorphous gadolinium-europium oxalate precursor was first prepared using the oxalate coprecipitation technique. The calcined powders obtained from the amorphous precursor were nearly spherical in shape, and a narrow size distribution was obtained. The NaOH coprecipitant was more effective in the preparation of nanometer-sized spherical powders. A thermal decomposition process was conducted for the three kinds of precursors. The photoluminescence property was also measured as a function of europium content, and concentration quenching occurred for samples with europium concentrations of over 10 mol%.

High Luminance $Zn_2SiO_4$:Mn phosphors Prepared by Homogeneous Precipitation Method

  • Jung, Ha-Kyun;Sohn, Kee-Sun;Sung, Bu-Young;Park, Hee-Dong
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Manganese-doped $Zn_2SiO_4$ phosphors well known as a green emitter with high luminescence efficiency were prepared by the homogeneous precipitation method, and their photoluminescence properties under vacuum-ultraviolet (VUV) excitation were investigated. $Zn_2SiO_4$:Mn phosphors obtained by this method have exhibited a high luminance of property and a spherical shape of particles. In particular, the green emission intensity of zinc orthosilicate prepared as containing around 2 mole% of manganese was much stronger than that of the commercial $Zn_2SiO_4$:Mn phosphor, while the decay time was longer. However, addition of $Al^{3+}$ and $Li^+$ into $Zn_2SiO_4$:Mn composition has significantly diminished the decay time of the phosphor without much degradation of the emission intensity.

  • PDF

High brightness property of Power Electroluminescent Device using ZnS:Cu (ZnS:Cu를 이용한 후막 전계발광소자의 고휘도 특성)

  • Lee, Jong-Chan;Park, Dae-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.349-353
    • /
    • 1999
  • In this paper, to fabricate the AC power electroluminescent device (PELD) with high brightness, new structure that constructed single emissive layer between electrodes was proposed. Dielectric and phosphor material structure that constructed single emissive layer between electrodes was proposed. Dielectric and phosphor material were BaTiO3 and ZnS:Cu respectively. Fabricated AC power EL devices were estimated by optical and electrical properties of EL spectrum, brightness, CIE coordinate system, transferred charge density and EL emission wave in time domain. With above results, we found that brightness of newly proposed AC powder EL power EL device was 2754 cd/m2 at 100V, 400 Hz and compared with conventional device structure.

  • PDF

The Luminescence Property of Ba-Mg-Al-O:$Eu^2+$ Blue Phosphors (Ba-Mg-Al-O:$Eu^2+$ 청색형광체의 발광특성)

  • 김광복;천희곤;조동율;구경완
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.157-161
    • /
    • 2000
  • Blue phosphor of Ba-Mg-Al-O:Eu$^{2+}$ phase was fabricated by conventional firing techniques under reducing atmosphere and its photoluminescence properties are studied with varying Eu concentration and phost-annealing temperature under air atmosphere. This phosphors were well crystallized with particle size in the range of 3~5um and emitted a blue light at a dominent wavelength 450nm for 254nm UV irradiation. The concentration quenching wit Eu$^{2+}$ was that with increasing Eu concentration the energy transfer between the activator ions steadily improves, so that the excitation energy is transported over larger distances through the lattice before luminescence can occur. Thermal quenching also occurred in this phosphor means that in a host lattice with the $\beta$-alumina structure the bond of an Eu$^{2+}$ ion with the nearest-neighbour oxygen ion is much stronger than in a lattice with the magnetoplumbite structure.cture.

  • PDF

Effect of Glass Composition on the Optical Properties of Color Conversion Glasses for White LED (유리조성에 따른 백색 LED용 색변환 유리의 광특성)

  • Huh, Cheolmin;Hwang, Jonghee;Lim, Tae-Young;Kim, Jin-Ho;Lee, MiJai;Yoo, Jong-Sung;Park, Tae-Ho;Moon, Jooho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.669-674
    • /
    • 2012
  • Yellow phosphor dispersed color conversion glasses are promising phosphor materials for white LED applications because of their good thermal durability, chemical stability, and anti-ultraviolet property. Six color conversion glasses were prepared with high Tg and low Tg specimens of glass. Luminous efficacy, luminance, CIE (Commission Internationale de l'Eclairage) chromaticity, CCT (Correlated Color Temperature), and CRI (Color Rendering Index) of the color conversion glasses were analyzed according to the PL spectrum. Color conversion glasses with high Tg glass frit, sintered at higher temperature, showed better luminous properties than did color conversion glasses with low Tg glass frit. The characteristics of the color conversion glass depended on the glass composition rather than on the sintering temperature. The XRD peaks of the YAG phosphor disappeared in the color conversion glass with major components of $B_2O_3$-ZnO-$SiO_2$-CaO and, in the XRD results, new crystalline peaks of $BaSi_2O_5$ appeared in the color conversion glass with major components of $Bi_2O_3$-ZnO-$B_2O_3$-MgO. The characteristics of CIE chromaticity, CCT, and the CRI of low Tg color conversion glasses showed worse color properties than those of high Tg color conversion glasses. However, these color characteristics of low Tg glasses were improved by thickness variation. So color conversion glasses with good characteristics of both luminous and color properties were attained.