• Title/Summary/Keyword: Phospholipase B

Search Result 71, Processing Time 0.026 seconds

Sound Stress Alters Physiological Processes in Digestion and Immunity and Enhances Insecticide Susceptibility of Spodoptera exigua (스트레스 음파에 따른 파밤나방(Spodoptera exigua ) 소화 및 면역 생리작용 저하와 살충제 감수성 제고 효과)

  • Park, Jung-A;Seok, Jung-Kyun;Prasad, Surakasi Venkara;Kim, Yong-Gun
    • Korean journal of applied entomology
    • /
    • v.50 no.1
    • /
    • pp.39-46
    • /
    • 2011
  • This study analyzed effects of different sound treatments in frequencies and intensities on digestion and immune physiological processes of the beet armyworm, Spodoptera exigua larvae. Without effect on egg hatch, sound treatments with 100-5,000 Hz at 95 dB suppressed feeding behavior and inhibited a digestive enzyme activity. In addition, two dimensional electrophoresis of midgut luminal proteins indicated a marked difference of the sound-treated larvae. In response to 5,000 Hz at 95 dB, larvae showed a significant decrease in hemocyte nodule formation against fungal challenge along with significant suppression in phospholipase $A_2$ activity in hemocyte and plasma. With increase of sound frequencies, the treated larvae showed an enhanced susceptibility to insecticides. Such sound frequency effect was significantly modulated with different sound intensities. These results suggest that sound treatment may give adverse stress to physiological processes of S. exigua larvae and may be applied to a nonchemical insect pest control.

The Effects of Aristolochic Acid on Reproductive Function in Female Rats (흰쥐에서 아리스톨로킨산이 생식기능에 미치는 영향)

  • Park, Chul-Hoon;Kwack, Seung-Jun
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.2
    • /
    • pp.89-98
    • /
    • 2009
  • The toxicity of aristolochic acid (ArA) has attracted considerable attention since the case of nephropathy regarding diet pill preparations was reported. The present study was performed to determine the reproductive toxicity of ArA in female SD rats. ArA was administered orally to female rats at 2, 8 or 16 mg/kg b.w./day and the females were mated with untreated males and their reproductive status was determined. ArA is well known as PLA2 inhibitor, toxic effects of such a relationship are not yet clear, and in vivo study on this matter are scarce. For this study, ArA was administered to pregnant rats at 10 or 20 mg/kg b.w./day, because premating treatments were not conducted. Administration of 20 mg/kg b.w./day caused infertility or abortion. In ArA-treated groups, PGF2a productions were inhibited and apoptosis were suppressed. Collectively, this study may help to further define the roles of sPLA2 in reproductive organs and to determine the toxic mechanisms of ArA.

Carbachol-induced Phosphorylation of Phospholipase D1 through Protein Kinase C is required for the Activation in COS-7 cells

  • Lee, Byoung-Dae;Kim, Yong;Han, Jung-Min;Suh, Pann-Ghill;Ryu, Sung-Ho
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.182-187
    • /
    • 2001
  • Phospholiapse D (PLD), and phosphatidic acid generated by it, have been implicated in receptor-mediated intracellular signaling. Carbachol (CCh) is known to activate PLD1, and protein kinase C (PKC) is known to mediate in this signaling pathway In recent reports (Kim et al., 1999b; Kim et al., 2000), we published our observations of the direct phosphorylation of PLD1 by PKC and we described the phosphorylation-dependent regulation of PLD1 activity. In this study, we investigated the phasphorylation and compartmentalization of PLD1 in terms of CCh signaling in M3 muscarinic receptor (M3R)-expressing COS-7 cells. CCh treatment of COS-7 cells transiently coexpressing PLD1 and M3R stimulated PLD1 activity and induced direct phosphorylation of PLD1 by PKC. The CCh-induced activation and phosphorylation of PLD1 was completely blocked upon pretreatment of the cells with PKC-specific inhibitors. We looked at the localization of the PLD1 phosphorylation by PKC and found that PLD1 was mainly located in the caveolin-enriched membrane (CEM) fraction. Based on these results, we conclude that CCh induces the activation and phosphorylation of PLD1 via PKC and that the phosphorylation of PLD1 occurs in caveolae.

  • PDF

Involvement of phospholipase $A_2$ in ATP-induced mucin release from cultured Hamster Tracheal Surface Epithelial cells

  • Jo, M.;Ko, K.H.;Kim, K.C.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.219-219
    • /
    • 1996
  • Mucin release from hamster tracheal surface epithelial(HTSE) cells can be stimulated by extracellular ATP via activation of P$_2$ purinoceptors located on the cell surface which appears to be coupled to phospholipase C via G proteins. However, our preliminary data indicate that the ATP-induced mucin release involves, in part, activation of PKC, but not an increase in the intracellular Ca++ level, suggesting the presence of another pathway which is separate from the PLC-PKC pathway, In this study, we intended to confirm the previous observation and subsequently identify an additional mechanism. Confluent HTSE cells were metabolically labeled with either $^3$H-glucosamine or $^3$H-arachidonic acid(AA), and release of either $^3$H-mucin or $^3$H-AA was quantified following various treatments. $^3$H-mucin was assayed using the sepharose CL-4B gel-filtration method, whereas $^3$H-AA liberation was measured by counting $^3$H-radioactivity in the chase medium. We found that: (1)Desensitization of PKC by pretreatment with PMA completely abolished the mucin releasing effect of PMA but partially inhibited the ATP-induced mucin release; (2) ATP increases release of $^3$H-AA in a dose-dependent fashion; (3) mepacrine, an inhibitor of PLA$_2$, attenuates ATP-induced mucin release in a dose-dependent fashion. These results confirm our previous notion that the PLC-PKC pathway is responsible, in part, for ATP-induced mucin release. Furthermore, activation of PLA$_2$ appears to be an additional pathway which is involved in ATP-induced mucin release.

  • PDF

Expression of phospholipase C β1 in olive flounder (Paralichthys olivaceus) following external stress stimulation

  • Woo, Soo Ji;Jang, Hee Young;Lee, Hyung Ho;Chung, Joon Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.18.1-18.10
    • /
    • 2016
  • In this study, to clarify the function of $PoPLC-{\beta}1$, in response to stress challenge, we examined the $PoPLC-{\beta}1$ expression pattern in response to external stress (pathogen-associated molecular pathogen challenge and environmental challenge including temperature and salinity). $PoPLC-{\beta}1$ expression analysis of tissue from olive flounder showed that the messenger RNA (mRNA) was predominantly expressed in the brain, heart, eye, liver, spleen, and stomach. We also tested the mRNA expression of the $PoPLC-{\beta}1$ in the spleen and kidney of olive flounder by RT-PCR and real-time PCR following stimulation with lipopolysaccharide (LPS), concanavalin A (ConA), or polyinosinic:polycytidylic acid (PolyI:C) and compared with the inflammatory cytokines IL-1b and IL-6 in the stimulated flounder tissues. Each of the spleen and kidney and mRNA transcripts of $PoPLC-{\beta}1$ were increased 30- and 10-fold than normal tissue at 1-6 h post injection (HPI) with PolyI:C when the expression of $PoPLC-{\beta}1$ transcript was similar to LPS and ConA. We also tested the expression of $PoPLC-{\beta}1$ in response to temperature and salinity stress. The expression of $PoPLC-{\beta}1$ also was affected by temperature and salinity stress. Our results provide clear evidence that the olive flounder $PLC-{\beta}1$ signal pathways may play a critical role in immune function at the cellular level and in inflammation reactions. In addition, $PLC-{\beta}1$ appears to act as an oxidative-stress suppressor to prevent cell damage in fish.

Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests (벤질리덴아세톤 화학구조 변이에 따른 생리활성 변화 분석 및 식물 병해충 방제 효과)

  • Seo, Sam-Yeol;Jun, Mi-Hyun;Chun, Won-Su;Lee, Sung-Hong;Seo, Ji-Ae;Yi, Young-Keun;Hong, Yong-Pyo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.50 no.2
    • /
    • pp.107-113
    • /
    • 2011
  • Benzylideneacetone (BZA) is a compound derived from culture broth of an entomopathogenic bacterium, Xenorhabdus nematophila (Xn). Its immunosuppressive activity is caused by its inhibitory activity against eicosanoid biosynthesis. This BZA is being developed as an additive to enhance control efficacy of other commercial microbial insecticides. This study was focused on the enhancement of the immunosuppressive activity of BZA by generating its chemical derivatives toward decrease of its hydrophobicity. Two hydroxylated BZA and one sugar-conjugated BZA were chemically synthesized. All derivatives had the inhibitory activities of BZA against phospholipase $A_2$ ($PLA_2$) and phenoloxidase (PO) of the diamondback moth, Plutella xylostella, but BZA was the most potent. Mixtures of any BZA derivative with Bacillus thuringiensis (Bt) significantly increased pathogenicity of Bt. BZA also inhibited colony growth of four plant pathogenic fungi. However, BZA derivatives (especially the sugar-conjugated BZA) lost the antifungal activity. These results indicated that BZA and its derivatives inhibited catalytic activities of two immune-associated enzymes ($PLA_2$ and PO) of P. xylostella and enhanced Bt pathogenicity. We suggest its use to control plant pathogenic fungi.

Effects of Green Tea Catechin on Platelet Phospholipase $A_{2}$ Activity and the Liver Antioxidative Defense System in Streptozotocin-induced Diabetic Rats

  • Yang, Jeong-Ah;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.4
    • /
    • pp.213-218
    • /
    • 2000
  • The purpose of the study was to investigate the effects of dietary green tea catechin and vitamin E on the phospholipse {TEX}$A_{2}${/TEX} activity and th antioxidative defense system in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley male rats weighing 100$\pm$10 gm were randomly assigned to one normal and five STZ-induced diabetic groups. The diabetic groups were assigned either a catechin-free diet (DM group), 0.5% catechin diet (DM-0.5C group), 1% catechin diet (DM-1C group), vitamin E-free diet (DM-0E group), and 400 mg vitamin E per kg diet (DM-400E group) according to the levels of dietary catechin or vitamin E supplementation. The vitamin E levels of the normal, DM, DM-0.5C, and DM-1C groups were 40 mg per kg diet. Diabetes was experimentally induced by an intravenous injection of streptozotocin after 4 weeks of feeding the five experimental diets. The animals were sacrificed on the 6th day of he diabetic state. The body weight gains were lower in all five diabetic groups after the STZ injection. The platelet phospholipase {TEX}$A_{2}${/TEX}({TEX}$PLA_{2}${/TEX}) activity in the diabetic groups was higher than that in the normal group. However, the enzyme activity in the DM-0.5C, DM-1C, and DM-400E groups was lower than that in the DM and DM-0E groups. The cytochrome {TEX}$P_{450}${/TEX} and cytochrome {TEX}$b_{5}${/TEX} content and NADPH-cytochrome {TEX}$P_{450}${/TEX} reductase activity were about 50~110% higher in the DM and DM-0E groups than in the normal group, yet significantly reduced by either catechin or vitamin E supplementation. The superoxide dismutase (SOD) content in the liver did not differ significantly in any of the groups. However, the glutathione peroxidase (GSHpx) activity was generally lower in the diabetic groups, compared with the normal group, whereas that of the DM-0.5C, DM-1C, and DM-400E groups was significantly higher compared with that of the DM and DM-0E groups. The levels of thiobarbituric acid reactive substances (TBARS) in the liver tissue were 148% and 201% higher in the DM and DM-0E groups, respectively, compared with the normal group, however, these levels were reduced by either catechin or vitamin E supplementation (DM-0.5, DM-1C and DM-400E). Accordingly, the present results indicate that STZ-induced diabetic rats exhibited an imbalance between free radical generation and scavenger systems in the liver which led to the acceleration of lipid peroxidation. However, these abnormalities were reduced and the antioxidative defense system was restored by either dietary catechin or vitamin E supplementation. In conclusion, the effects of dietary catechin or vitamin E in streptozotocin-induced diabetic rats would appear to inhibit lipid peroxidation as an anti-oxidant by regulating the activity of {TEX}$PLA_{2}${/TEX}.

  • PDF

Phospholipase A2 Contributes to Hemorrhage-induced Acute Lung Injury Through Neutrophilic Respiratory Burst (출혈성 쇼크에 의한 급성 폐손상에서 Phospholipase A2의 활성화에 의한 산화성스트레스의 역할)

  • Jang, Yoo-Suck;Kim, Seong-Eun;Jheon, Sang-Hoon;Shin, Tae-Rim;Lee, Young-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.6
    • /
    • pp.503-516
    • /
    • 2001
  • Background : The present study was carried out in association with neutrophilic respiratory burst in the lung in order to clarify the pathogenesis of acute respiratory distress syndrome(ARDS) following acute severe hemorrhage. Because oxidative stress has been suggested as one of the principal factors causing tissue injury, the role of free radicals from neutrophils was assessed in acute hemorrhage-induced lung injury. Method : In Sprague-Dawley rats, hemorrhagic shock was induced by withdrawing blood(20 ml/kg of B.W) for 5 min and the hypotensive state was sustained for 60 min. To determine the mechanism and role of oxidative stress associated with phospholipase A2(PLA2) by neutrophils, the level of lung leakage, pulmonary myeloperoxidase(MPO), and the pulmonary PLA2 were measured. In addition, the production of free radicals was assessed in isolated neutrophils by cytochemical electron microscopy in the lung. Results : In hypotensive shock-induced acute lung injury, the pulmonary MPO, the level of lung leakage and the production of free radicals were higher. The inhibition of PLA2 with mepacrine decreased the pulmonary MPO, level of lung leakage and the production of free radicals from neutrophils. Conclusion : A. neutrophilic respiratory burst is responsible for the oxidative stress causing acute lung injury followed by acute, severe hemorrhage. PLA2 activation is the principal cause of this oxidative stress.

  • PDF

Basic Fibroblast Growth Factor Increases Intracellular Magnesium Concentration through the Specific Signaling Pathways

  • Hong, Bing-Zhe;Park, Sun-Ah;Kim, Han-Na;Ma, Tian-Ze;Kim, Han-Gyu;Kang, Hyung-Sub;Kim, Hwan-Gyu;Kwak, Yong-Geun
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.13-17
    • /
    • 2009
  • Basic fibroblast growth factor (bFGF) plays an important role in angiogenesis. However, the underlying mechanisms are not clear. $Mg^{2+}$ is the most abundant intracellular divalent cation in the body and plays critical roles in many cell functions. We investigated the effect of bFGF on the intracellular $Mg^{2+}$ concentration ($[Mg^{2+}]_i$) in human umbilical vein endothelial cells (HUVECs). bFGF increased ($[Mg^{2+}]_i$) in a dose-dependent manner, independent of extracellular $Mg^{2+}$. This bFGF-induced $[Mg^{2+}]_i$ increase was blocked by tyrosine kinase inhibitors (tyrphostin A-23 and genistein), phosphatidylinositol 3-kinase (PI3K) inhibitors (wortmannin and LY294002) and a phospholipase $C{\gamma}$ ($PLC{\gamma}$) inhibitor (U73122). In contrast, mitogen-activated protein kinase inhibitors (SB202190 and PD98059) did not affect the bFGF-induced $[Mg^{2+}]_i$ increase. These results suggest that bFGF increases the $[Mg^{2+}]_i$ from the intracellular $Mg^{2+}$ stores through the tyrosine kinase/PI3K/$PLC{\gamma}$-dependent signaling pathways.

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • v.40 no.10
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.