• Title/Summary/Keyword: Phospholipase A

Search Result 538, Processing Time 0.034 seconds

Nucleotide Sequence of an Extracellular Phospholipase D Gene from Streptomyces somaliensis and Transphosphatidylation Activity of Its Enzyme (Streptomyces somaliensis가 생산하는 세포외 Phospholipase D의 유전자 서열 분석과 Transphosphatidylation 활성 특성)

  • Jeong Sujin;Lee Sun-Hee;Uhm Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.40 no.3
    • /
    • pp.211-216
    • /
    • 2004
  • A bacterial strain JE-ll found to produce active extracellular phospholipase D (PLD) was selected from the soil isolates. It was identified as Streptomyces somaliensis on the basis of 16S rDNA sequence analysis, morphological and physiological characteristics. The gene (sspld) encoding S. somaliensis PLD was isolated and characterized. The open reading frame was suggested to encode 538 amino acids with a signal peptide of 33 amino acids. The deduced amino acid sequence of the sspld shared a sequence similarity of 70-88% with PLDs of other Streptomyces sp. so far reported. The PLD converted phosphatidylcholine to phosphatidylglycerol or phosphatidylserine with the yield of 96 to 99% (㏖/㏖), but did not act on inositol or ethanolamine as a transphosphatidylation donor.

Effect of Extremely Low Frequency Electromagnetic Fields (EMF) on Phospholipase Activity in the Cultured Cells

  • Song, Ho-Sun;Kim, Hee-Rae;Ko, Myoung-Soo;Jeong, Jae-Min;Kim, Yong-Ho;Kim, Myung-Cheul;Hwang, Yeon-Hee;Sohn, Uy-Dong;Gimm, Yoon-Myoung;Myung, Sung-Ho;Sim, Sang-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.427-433
    • /
    • 2010
  • This study was conducted to investigate the effects of extremely low frequency electromagnetic fields (EMF) on signal pathway in plasma membrane of cultured cells (RAW 264.7 cells and RBL 2H3 cells), by measuring the activity of phospholipase $A_2$ ($PLA_2$), phospholipase C (PLC) and phospholipase D (PLD). The cells were exposed to the EMF (60 Hz, 0.1 or 1 mT) for 4 or 16 h. The basal and $0.5\;{\mu}M$ melittin-induced arachidonic acid release was not affected by EMF in both cells. In cell-free $PLA_2$ assay, we failed to observe tbe change of $cPLA_2$ and $sPLA_2$ activity. Also both PLC and PLD activities did not show any change in the two cell lines exposed to EMF. This study suggests that the exposure condition of EMF (60 Hz, 0.1 or 1 mT) which is 2.4 fold higher than the limit of occupational exposure does not induce phospholipases-associated signal pathway in RAW 264.7 cells and RBL 2H3 cells.

Isolation of Phospholipase-A2 Inhibitors from MeOH Extract of Scutellaria bicalensis

  • Joe, Yoon-ki;Kim, Sang-Hyun;Kim, So-Hee;Moon, Dong-Chul;Chang, Hyun-Wook;Son, Jong-Keun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.55-55
    • /
    • 1995
  • 황금 뿌리로부터 Phospholipase-A2 저해제의 분리, 구조결정 방법: 황금의 MeOH 추출물로부터 용매분획과 column chromatography를 통하여 Phospholipase A2 저해작용을 가진 물질들을 분리하고, 이들의 구조를 확인하였다. 결과: Bioassay를 기초로 하여 Phospholipase-A2 저해작용이 있는 기지물질 6종을 분리, 구조확인 하였다.

  • PDF

Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity

  • Kim, Hyung Sik;Park, Min Young;Lee, Sung Kyun;Park, Joon Seong;Lee, Ha Young;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.418-423
    • /
    • 2018
  • Emergency granulopoiesis is a very important strategy to supply efficient neutrophil number in response to infection. However, molecular mechanism involved in this process remains unclear. Here, we found that administration of WKYMVm, an immune modulating peptide, to septic mice strongly increased neutrophil number through augmented emergency granulopoiesis. WKYMVm-induced emergency granulopoiesis was blocked not only by a formyl peptide receptor 2 (FPR2) antagonist (WRW4), but also by FPR2 deficiency. As progenitors of neutrophils, $Lin^-c-kit^+Sca-1^-$ cells expressed FPR2. WKYMVm-induced emergency granulopoiesis was also blocked by a phospholipase C inhibitor (U-73122). These results suggest that WKYMVm can stimulate emergency granulopoiesis via FPR2 and phospholipase C enzymatic activity.

Activation of Phospholipase D in Rat Thymocytes by Sphingosine

  • Lee, Young-kyun;Choi, Myung-Un
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1451-1489
    • /
    • 2002
  • Sphingosine is known to regulate a wide range of cell physiology including growth, differentiation, and apoptosis. In this study, we examined the effect of sphingosine on the phospholipase D (PLD) activity in rat thymocytes. Sphingosine potently stimulated PLD in the absence of extracellular calcium, while depletion of intracellular calcium by BAPTA/AM treatment completely blocked activation of PLD by sphingosine. Sphingosine-induced increase of the intracellular calcium concentration was confirmed using a fluorescent calcium indicator Fluo-3/AM. A phosphoinositide-specific phospholipase C inhibitor U73122 partially inhibited the stimulation of PLD by sphingosine. When mouse PLD2 gene was transfected into mouse thymoma EL4 cells, which lack intrinsic PLD activity, sphingosine could stimulate PLD2 significantly while overexpression of human PLD1 had no effect. Taken together, the sphingosine-stimulated PLD activity in rat thymocytes is dependent on the mobilization of intracellular calcium and appears to be due to the PLD2 isoform.

Phospholipase $A_2$ excreted from the cells of hyperthermophilic microbes (초호열성균이 생성하는 phospholipase $A_2$에 관한 연구)

  • Joh, Yong-Goe;Woo, Hyo-Kyeng;Kim, Yeon-Sim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.263-271
    • /
    • 1999
  • We checked the presence of phospholipase $A_2(PLA)_2$ which could split the ester bond at the position 2 in the glycerol backbone of glycerophospholipids, in the cells of hyperthermophiles of Pyrococcus horikoshii and Sulfolobus acidocaldarius. The results obtained are as follows; (1). Pyrococcus horikoshii cells were grown in obligate anaerobic conditions at $95^{\circ}C$ and they needed sulfur as energy source instead of oxygen, while Sulfolobus acidocaldarius species grew well in the aerobic medium (pH 2.5) containing yeast and sucrose at $75^{\circ}C$. (2). Pyrococcus horikoshii cells produced phospholipase $A_2$ in the cell culture media although this species did not show lipase activity at least in the pH range of 1.5 ${\sim}$ 3.5. Sulfolobus acidocaldarius cells produced lipase hydrolyzing triacylglycerols such as triolein, but did not split any kind of phospholipids used as substates. (3). The compound of 1-decanoyl-2-(p-nitrophenylglutaryl) phosphatidylcholine was not suitable for a substrate in this experiment, though frequently used as a subtrate for checking presence of phospholipase $A_2$, for its decomposi-tion in this experiment. The L-${\alpha}$-phosphatidylcholine-${\beta}$-[N-7-nitrobenz-2-oxa-1, 3-diazol]aminohexanoyl-${\gamma}$-hexadecanoyl labelled with a fluorescent material, did not show any migration of acyl chains in the molecule during the reaction with phospholipase $A_2$ under a hot condition. (4). Phospholipase $A_2$ in the cells of Pyrococcus horikoshii, showed the optimum activity at $pH6.7{\sim}7.2$ and $95{\sim}105^{\circ}C$, respectively, and was activated by addition of calcium chloride solution. Andthe phospholipase $A_2$ specifically hydrolyzed glycero-phospholipids such as phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and phosphatidyl inositol, but could not split phospholipid containing ether bonds in the molecule such as DL -${\alpha}$-phosphatidylcholine-${\beta}$-palmitoyl-${\gamma}$-O-hexadecyl, DL-${\alpha}$-phosphati- dylcholine-${\beta}$- oleoyl-${\gamma}$-O-hexadecyl, DL-phosphatidylcholine-dihexadecyl.

Gene Cloning of Streptomyces Phospholipase D P821 Suitable for Synthesis of Phosphatidylserine

  • Moon Min-Woo;Lee Jung-Kee;Oh Tae-Kwang;Shin Chul-Soo;Kim Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.408-413
    • /
    • 2006
  • A strain, P821, with phospholipase D activity was isolated from soil and identified as a Streptomyces species. The phospholipase D enzyme was purified from a culture broth of the isolated strain using ammonium sulfate precipitation and DEAE-Sepharose, phenyl-Sepharose, and Superose 12 HR column chromatographies. The purified enzyme exhibited an optimum temperature and pH of $55^{\circ}C$ and 6.0, respectively, in the hydrolysis of phosphatidylcholine and remained stable up to $60^{\circ}C$ within a pH range of 3.5-8.0. The enzyme also catalyzed a transphosphatidylation reaction to produce phosphatidylserine with phosphatidylcholine and serine substrates. The optimum conditions for the transphosphatidylation were $30^{\circ}C$ and pH 5.0, indicating quite different optimum conditions for the hydrolysis and transphosphatidylation reactions. The gene encoding the enzyme was cloned by Southern hybridization and colony hybridization using a DNA probe designed from the conserved regions of other known phospholipase D enzymes. The resulting amino acid sequence was most similar to that of the PLD enzyme from Streptomyces halstedii (89.5%). Therefore, the enzyme was confirmed to be a phospholipase D with potential use in the production of phosphatidylserine.

Characterization of Chinese Cabbage Phospholipase D by a Multistirring Batch System Bioreactor (다중 교반형 생물반응기에 의한 배추 Phospholipase D의 특성연구)

  • 박동훈;정의호이해익이상영
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.119-124
    • /
    • 1990
  • Phospholipase D catalyzes the phosphatidohydrolysis and transphosphatidylation of phospholipid in the biological systems. In this study we were partially purified phospholipase D from Chinese cabbage and the characterization of the enzyme was carried out in a multistirring batch system bioreactor. The enzyme showed optimum activity at pH ,5.6, highest activity at 37$^{\circ}C$ and Ca2+ is important for the enzyme activity. Optimum concentrations of Ca2+ for phosphatidohydrolysis was 20 mM and for transphosphatidylation was 40 mM, respectively. Some organic solvents such as diethylether, isopropylether and butylacetate were activated the enzyme activity. On the other hand, EDTA, Ba2+, Mn2+ and Zn2+ showed inhibitory effect on the enzyme activity. The base acceptors in transphosphatidylation by the Chinese cabbage phospholipase D were tested. Various poly-and monohydroxy alcohols were found to be active.

  • PDF

Inhibitory Effects of Verapamil and TMB-8 on Tonic Contraction Are Accompanied by Inhibition of Phospholipase C Activity in Intact Gastric Smooth Muscle Cells

  • Sim, Sang-Soo;Yoon, Shin-Hee;Hahn, Sang-June;Rhie, Duck-Joo;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.29-37
    • /
    • 1995
  • Gastric smooth muscle of guinea pigs was used to investigate whether the inhibitory effect of calcium antagonists on tonic contraction was accompanied by inhibition of phospholipase C activity. Tonic contraction and $[^{3}H]$ inositol phosphate (IP) formation in response to acetylcholine were measured after pretreatment with verapamil, nifedipine, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxy-benzoate (TMB-8) or EGTA. Verapamil $(10\;{\mu}M)$, TMB-8 $(10\;{\mu}M)$ or EGTA (2 mM) significantly inhibited acetylcholine $(1\;{\mu}M)$-stimulated tonic contraction but nifedipine (100 nM) did not. Acetylcholine dose-dependently increased the formation of $[^{3}H]IP$. This effect was not observed in the presence of 2 mM EGTA. Both verapamil and TMB-8 significantly inhibited $[^{3}H]IP$ formation induced by $10\;{\mu}M$ acetylcholine, whereas nifedipine did not. In a subsequent study, we measured phospholipase C activity in gastric muscle cell homogenate and in permeabilized cells to determine whether calcium antagonists could inhibit the activity directly. The calcium antagonists did not change the phospholipase C activity of the cell homogenate or the permeabilized cells. But EGTA decreased phospholipase C activity by 50%. These results suggest that the inhibitory effects of verapamil and TMB-8 on acetylcholine-stimulated tonic contraction may be accompanied by inhibition of phospholipase C activity.

  • PDF

Production and Characterization of Extracellular Phospholipase D from Streptomyces sp. YU100

  • Lim, Si-Kyu;Choi, Jae-Woong;Chung, Min-Ho;Lee, Eun-Tae;Khang, Yong-Ho;Kim, Sang-Dal;Nam, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.189-195
    • /
    • 2002
  • Using Streptomyces sp. YU100 isolated from Korean soil, the fermentative production of phospholipase D was attempted along with its purification and characterization studies. When different carbon and nitrogen sources were supplemented in the culture medium, glucose and yeast extract were found to be the best. By varying the concentration of nutrients and calcium carbonate, the optimal culture medium was determined as 2.0% glucose, 1.5% yeast extract, 0.5% tryptone 0.3% calcium carbonate. During cultivation, the strain secreted most of the phospholipase D in the early stage of growth within 24 h. The phospholipase D produced in the culture broth exhibited hydrolytic activity as well as transphosphatidylation activity on lecithin (phosphatidylcholine). In particular, the culture broth showed 8.7 units/ml of hydrolytic activity when cultivated at $28^{\circ}C$ for 1.5 days. The phospholipase D was purified using 80% ammonium sulfate precipitation and DEAE-Sepharose CL-6B column chromatography, which produced a major band of 57 kDa on a 10% SDS-polyacrylamide gel with purity higher than 80%. The enzyme showed an optimal pH of 7 in hydrolytic reaction, and at pH 4 in a transphosphatidylation reaction. The enzyme activity increased until the reaction temperature was elevated to $60^{\circ}C$. The enzyme was relatively stable at high temperatures and neutral pH, but significantly unstable in the alkaline range. Among the detergents tested as emulsifiers of phospholipids, the highest enzyme activity was observed when 1.5% Triton X-100 was employed. However, no inhibitory effect by metal ions was detected. Under optimized reaction conditions, the purified enzyme not only completely decomposed PC to phosphatidic acid within 1 h, but also exhibited higher than 80% conversion rate of PC to PS by transphosphatidylation within 4 h.