• Title/Summary/Keyword: Phospholipase A$_2$ Inhibitor

Search Result 119, Processing Time 0.023 seconds

Silica Induced Phospholipase D (PLD) Activation in Rat2 Fibroblasts

  • Ahn Eun-Kyung;Lim Oh-Kyung;Nam Hae-Yun;Kim Hyung Jung;Chung Namhyun;Bae Gwi-Nam;Lim Young
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.291-295
    • /
    • 2005
  • To define the effect of silica on the stimulator of signaling pathway, we studied the phospholipase D (PLD) activity in the Rat2 fibroblasts. Silica stimulated the accumulation of labeled $[^3H]$ phosphatidylethanol$([^3H]\;PEt)$ in a time- and concentration-dependent manner. This Silicainduced PLD activity was partially attenuated by the pretreatment with U73122 (phospholipase C inhibitor), genistein (protein tyrosine kinase inhibitor), PD 98056 (MEK inhibitor) and mepacrine (phospholipase $A_2$ inhibitor). But, sphingosine (protein kinase C inhibitor) and DPI (NADPH reductase inhibitor) had not effect the PLD activity. Silica also increased the PLD activity about four fold, which imply that the PLD activity is more influenced by the mobilization of PLD than other signaling mediators. The PLD activity also partially inhibited calcium chelator EGTA or/and BAPTA/AM compared to silica. Finally, we concluded that a silica-stimulated phospholipase D activity is present in the Rat2 fibroblasts and is modulated by combination of various signaling mediators.

Phospholipase Activities in Clinical and Environmental Isolates of Acanthamoeba

  • Matin, Abdul;Jung, Suk-Yul
    • Parasites, Hosts and Diseases
    • /
    • v.49 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • The pathogenesis and pathophysiology of Acanthamoeba infections remain incompletely understood. Phospholipases are known to cleave phospholipids, suggesting their possible involvement in the host cell plasma membrane disruption leading to host cell penetration and lysis. The aims of the present study were to determine phospholipase activities in Acanthamoeba and to determine their roles in the pathogenesis of Acanthamoeba. Using an encephalitis isolate (T1 genotype), a keratitis isolate (T4 genotype), and an environmental isolate (T7 genotype), we demonstrated that Acanthamoeba exhibited phospholipase $A_2$ (PLA$_2$). and phospholipase D (PLD) activities in a spectrophotometry-based assay. Interestingly, the encephalitis isolates of Acanthamoeba exhibited higher phospholipase activities as compared with the keratitis isolates, but the environmental isolates exhibited the highest phospholipase activities. Moreover, Acanthamoeba isolates exhibited higher PLD activities compared with the PLA$_2$. Acanthamoeba exhibited optimal phospholipase activities at $37^{\circ}C$ and at neutral pH indicating their physiological relevance. The functional role of phospholipases was determined by in vitro assays using human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier. We observed that a PLD-specific inhibitor, i.e., compound 48/80, partially inhibited Acanthamoeba encephalitis isolate cytotoxicity of the host cells, while PLA$_2$-specific inhibitor, i.e., cytidine 5'-diphosphocholine, had no effect on parasite-mediated HBMEC cytotoxicity. Overall, the T7 exhibited higher phospholipase activities as compared to the T4. In contract, the T7 exhibited minimal binding to, or cytotoxicity of, HBMEC.

Thrombin Induced Apoptosis through Calcium-Mediated Activation of Cytosolic Phospholipase A2 in Intestinal Myofibroblasts

  • Mi Ja Park;Jong Hoon Won;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.1
    • /
    • pp.59-67
    • /
    • 2023
  • Thrombin is a serine protease that participates in a variety of biological signaling through protease-activated receptors. Intestinal myofibroblasts play central roles in maintaining intestinal homeostasis. In this study, we found that thrombin-induced apoptosis is mediated by the calcium-mediated activation of cytosolic phospholipase A2 in the CCD-18Co cell. Thrombin reduced cell viability by inducing apoptosis and proteinase-activated receptor-1 antagonist attenuated thrombin-induced cell death. Endogenous ceramide did not affect the cell viability itself, but a ceramide-mediated pathway was involved in thrombin-induced cell death. Thrombin increased intracellular calcium levels and cytosolic phospholipase A2 activity. The ceramide synthase inhibitor Fumonisin B1, intracellular calcium chelator BAPTA-AM, and cytosolic phospholipase A2 inhibitor AACOCF3 inhibited thrombin-induced cell death. Thrombin stimulated arachidonic acid release and reactive oxygen species generation, which was blocked by AACOCF3, BAPTA-AM, and the antioxidant reagent Trolox. Taken together, thrombin triggered apoptosis through calcium-mediated activation of cytosolic phospholipase A2 in intestinal myofibroblasts.

Isolation and Characterization of MT2617-2B, a Phospholipase C Inhibitor Produced by an Actinomycetes Isolate (방선균 분리주가 생산하는 Phospholipase C 저해물질인 MT-2617-2B의 분리 및 특성)

  • Ko, Hack-Ryong;Lee, Hyun-Sun;Oh, Won-Keun;Ahn, Soon-Cheol;Kim, Bo-Yeon;Kang, Dae-Ook;Mheen, Tae-Ick;Ahn, Jong-Seog
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • A phospholipase C (PLC) inhibitor (MT267-2B) was isolated from the culture broth of actinomycetes isolate MT2617-2 by the extraction with n-butanol and column chromatographic techniques. The molecular weight of the inhibitor was 1057, by the spectroscopic analyses of IR, $^{13}C$-and $^{1}H$-NMR and ESI-MS. The chemical structure of MT2617-2B was found to be a macrolide compound consisted of a hemiketal ring, polyhydroxyl and polymethyl groups, which had a malonate and guanidine group as its side chain. MT2617-2B produced its two isomers having the same molecular weight by standing in methanol solution at room temperature. Therefore, MT2617-2B was identified as copiamycin and niphithricin A, macrolide antibiotics. The values of $IC_{50}$ against PLC-${\gamma}$1 and PLC-${\beta}$1 were 25 and 50${\mu}$g/ml, respectively. MT2617-2B had antimicrobial activities against Staphylococcus aureus and Candida albicans, but not against Escherichia coli.

  • PDF

D609, an Inhibitor of Phosphatidylcholine-specific Phospholipase C, Inhibits Group IV Cytosolic Phospholipase A2

  • Kang, Mi Sun;Jung, Sung Yun;Jung, Kwang Mook;Kim, Seok Kyun;Ahn, Kyong Hoon;Kim, Dae Kyong
    • Molecules and Cells
    • /
    • v.26 no.5
    • /
    • pp.481-485
    • /
    • 2008
  • As an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 has been widely used to explain the role of PC-PLC in various signal transduction pathways. This study shows that D609 inhibits group IV cytosolic phospholipase $A_2$ ($cPLA_2$), but neither secretory $PLA_2$ nor a $Ca^{2+}$-dependent $PLA_2$. Dixon plot analysis shows a mixed pattern of noncompetitive and uncompetitive inhibition with $K_i=86.25{\mu}M$ for the $cPLA_2$ purified from bovine spleen. D609 also time- and dose-dependently reduces the release of arachidonic acid from a $Ca^{2+}$- ionophore A23187-stimulated MDCK cells. In the AA release experiment, $IC_{50}$ of D609 was ${\sim375}{\mu}M$, suggesting that this reagent may not enter the cells easily. The present study indicates that the inhibitory effects of D609 on various cellular responses may be partially attributable to the inhibition of $cPLA_2$.

Histamine Release by Hydrochloric Acid is Mediated via Reactive Oxygen Species Generation and Phospholipase D in RBL-2H3 Mast Cells

  • Kim, Chang-Jong;Lee, Seung-Jun;Seo, Moo-Hyun;Cho, Nam-Young;Sohn, Uy-Dong;Lee, Moo-Yeol;Shin, Yong-Kyoo;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.675-680
    • /
    • 2002
  • In order to investigate the underlying mechanism of HCI in oesophagitis, the inflammatory response to HCI was observed in RBL-2H3 mast cells. Rat basophilic leukemia (RBL-2H3) cells were used to measure histamine release, arachidonic acid (AA) release, reactive oxygen species (ROS) and peroxynitrite generation induced by HCI. Exogenous HCl increased the level of histamine release and ROS generation in a dose dependent manner, whereas it decreased the spontaneous release of [$^3$H] M and the spontaneous production of peroxynitrite. Mepacrine (10 $\mu$M), oleyloxyethyl phosphorylcholine (10 $\mu$M) and bromoenol lactone (10 $\mu$M) did not affect both the level of histamine release and ROS generation induced by HCI. U73122 (1 $\mu$M), a specific phospholipase C (PLC) inhibitor did not have any influence on level of histamine release and ROS generation. Propranolol (200 $\mu$M), a phospholipase D (PLD) inhibitor, and neomycin (1 mM), a nonspecific PLC and PLD inhibitor, significantly inhibited both histamine release and ROS generation. Diphenyleneiodonium (10 $\mu$M), a NADPH oxidase inhibitor, and tiron (5 mM), an intracellular ROS scavenger significantly inhibited the HCI-induced histamine release and ROS generation. These findings suggest that the inflammatory responses to HCI is related to histamine release and ROS generation, and that the ROS generation by HCI may be involved in histamine release via the PLD pathway in RBL-2H3 cells.

A Phospholipase $A_2$ Inhibitor Isolated from Umilicaria esculenta (Umbilicaria esculenta가 생산하는 Depside계 화합물의 구조 및 Phospholipase $A_2$ 저해활성)

  • Kim, Jin-Woo;Song, Kyung-Sik;Chang, Hyeun Wook;Yu, Seung-Hun;Yoo, Ick-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.526-530
    • /
    • 1995
  • Phospholipase A$_{2}$ (PLA$_{2}$) is lipolytic enzyme that has known to be involved in inflammation. In the course of our screening for antiinflammatory compounds from natural products, a compound having PLA$_{2}$ inhibitory activities was isolated from the methanol extract of Umbilicaria esculenta. The compound was identified as lecanoric acid based on various NMR studies including DEPT, HETERO-COSY and HMBC experiments. Lecanoric acid inhibited human rheumatoid synovial PLA$_{2}$ activity with IC$_{50}$ of 0.17 mM and also exhibited antitumor activity (ED$_{50}$=2.7 $\mu $g/ml) against skin tumor cell line (LOX-IMVI).

  • PDF

Activation of formyl peptide receptor 2 by WKYMVm enhances emergency granulopoiesis through phospholipase C activity

  • Kim, Hyung Sik;Park, Min Young;Lee, Sung Kyun;Park, Joon Seong;Lee, Ha Young;Bae, Yoe-Sik
    • BMB Reports
    • /
    • v.51 no.8
    • /
    • pp.418-423
    • /
    • 2018
  • Emergency granulopoiesis is a very important strategy to supply efficient neutrophil number in response to infection. However, molecular mechanism involved in this process remains unclear. Here, we found that administration of WKYMVm, an immune modulating peptide, to septic mice strongly increased neutrophil number through augmented emergency granulopoiesis. WKYMVm-induced emergency granulopoiesis was blocked not only by a formyl peptide receptor 2 (FPR2) antagonist (WRW4), but also by FPR2 deficiency. As progenitors of neutrophils, $Lin^-c-kit^+Sca-1^-$ cells expressed FPR2. WKYMVm-induced emergency granulopoiesis was also blocked by a phospholipase C inhibitor (U-73122). These results suggest that WKYMVm can stimulate emergency granulopoiesis via FPR2 and phospholipase C enzymatic activity.

DIVERGENT ROLES OF A NOVEL PHOSPHOLIPASE $A_2$ IN CELL DEATH

  • Schnellmann, Rick G.
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.68-88
    • /
    • 2002
  • Phospholipase A$_2$ (s) are esterases that hydrolyze the sn-2 ester bond in phospholipids, releasing a fatty acid and a lysophospholipid. We previously showed that most PLA$_2$ activity in rabbit renal proximal tubule cells (RPTC) was Ca$\^$2+/-independent, localized to the endoplasmic reticulum (ER-iPLA$_2$), and inhibited by the specific Ca$\^$2+/-independent PLA$_2$ inhibitor bromoenol lactone (BEL).(omitted)

  • PDF