• Title/Summary/Keyword: Phosphine

Search Result 118, Processing Time 0.03 seconds

Synthesis and Cation Binding Properties of Triester Calix[4]arenes and Calix[4]quinones

  • 남계천;강성옥;전종철
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1050-1052
    • /
    • 1997
  • The complexes M(CO)4-1,2-(PPh2)2-1,2-C2B10H10 (M=Cr 2a, Mo 2b, W 2c) have been prepared in good yields from readily available bis-diphenylphosphino-o-carboranyl ligand, closo-1,2-(PPh2)2-1,2-C2B10H10 (1), by direct reaction with Group Ⅵ metal carbonyls. The infrared spectra of the complexes indicate that there is an octahedral disposition of chelate bis-diphenylphosphino-o-carboranyl ligand around the metal atom. The crystal structure of 2a was determined by X-ray diffraction. Complex 2a crystallizes in the monoclinic space group P21/n with cell parameters a = 12.2360(7), b = 17.156(1), c = 16.2040(6) Å, V = 3354.1(3) Å3, and Z =4. Of the reflections measured a total of 2514 unique reflections with F2 > 3σ(F2) was used during subsequent structure refinement. Refinement converged to R1 = 0.066 and R2 = 0.071. Structural studies showed that the chromium atom had a slightly distorted pseudo-octahedral configuration about the metal center with two phosphine groups of o-carborane occupying the equatorial plane cis-orientation to each other. These metal carbonyl complexes are rapidly converted to the corresponding metal carbene complexes, [(CO)3M=C(OCH3)(CH3)]-1,2-(PPh2)2-1,2-C2B10H10 (M= Cr 3a, Mo 3b, W 3c), via alkylation with methyllithium followed by O-methylation with CF3SO3CH3.

The [M(cod)(PPh$_3)_2] PF_6$ (M = Rh, Ir; cod = 1,5-cyclooctadiene) Mediated Activiation of Aldehyde C-H Bond

  • Ko, Jae-Jung;Joo, Wan-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.5
    • /
    • pp.372-376
    • /
    • 1987
  • Acetone solution of quinoline-8-carbaldehyde reacts with $[Rh(cod)(PPh_3)_2] PF_6$and $[Ir(cod)(PPh_3)_2] PF_6$ to yield $[Rh(NC_9H_6CO)(H)(PPh_3)_2(CH_3COCH_3)] PF_6$ (1) and $[Ir(NC_9H_6CO)(H)(PPh_3)_2(CH_3COCH_3)] PF_6$ (2), respectively. The compound $[Ir(cod)(PPh_3)_2] PF_6$ also reacts with $Ph_2PC_6H_4-o-CHO$ in the acetone / $H_2O$ mixture to give $[Ir(Ph_2PC_6H_4-o-CO)(H)(PPh_3)_2(CH_3COCH_3)] PF_6$ (3). Compounds 1, 2, and 3 were characterized by infrared, $^1H$ NMR, $^{31}P$ NMR spectra and conductivity measurement. The $^1H$ NMR spectra of 1, 2, and 3 support the presence of a terminal hydride that is cis to the phosphine. The IR band of 3 at 2185 $cm^{-1}$, which is assigned to $\nu$(Ir-H), and the hydride cleavage reaction of 3 with $CCl_4$, provide evidence for the Ir-H bond.

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

Synthesis of $Cp^*Ru(CO)Cl_2(Cp^*={\eta}^5-C_5Me_5)$ Complex and Reaction with Phosphines ($Cp^*Ru(CO)Cl_2(Cp^*={\eta}^5-C_5Me_5)$착물의 합성과 포스핀과의 반응)

  • Lee, Dong Hwan;Kim, Sng Il;Jun, Jin Hee;Oh, Yung Hee;Kam, Sang Kyu
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.12
    • /
    • pp.639-644
    • /
    • 1997
  • Novel carbonylruthenium (Ⅲ) complex Cp*Ru(CO)Cl2(2, Cp*=η5-C5Me5) was synthesized by the reaction of [Cp*RuCl2]2(1) with CO in toluene. The effective magnetic moment (Veff=1.81 B.M.) derived from the magnetic susceptibility measurement of the complex (2) was consistent with the presence of one "single" unpaired electron. Dibromocarbonylruthenium (Ⅲ) complex Cp*Ru(CO)Br2(3) was obtained by the reaction of complex (2) with KBr in toluene. Complex (2) was easily reduced by the reaction with phosphine in toluene to give the corresponding Ru (Ⅱ) complex Cp*Ru(CO)(PR3)Cl (4a∼4e, PR3=PMe3, PEt3, PMePh2, PPh3, PCy3).

  • PDF

Quantitative Exposure Assessment of Various Chemical Substances in a Wafer Fabrication Industry Facility

  • Park, Hyun-Hee;Jang, Jae-Kil;Shin, Jung-Ah
    • Safety and Health at Work
    • /
    • v.2 no.1
    • /
    • pp.39-51
    • /
    • 2011
  • Objectives: This study was designed to evaluate exposure levels of various chemicals used in wafer fabrication product lines in the semiconductor industry where work-related leukemia has occurred. Methods: The research focused on 9 representative wafer fabrication bays among a total of 25 bays in a semiconductor product line. We monitored the chemical substances categorized as human carcinogens with respect to leukemia as well as harmful chemicals used in the bays and substances with hematologic and reproductive toxicities to evaluate the overall health effect for semiconductor industry workers. With respect to monitoring, active and passive sampling techniques were introduced. Eight-hour long-term and 15-minute short-term sampling was conducted for the area as well as on personal samples. Results: The results of the measurements for each substance showed that benzene, toluene, xylene, n-butyl acetate, 2-methoxy-ethanol, 2-heptanone, ethylene glycol, sulfuric acid, and phosphoric acid were non-detectable (ND) in all samples. Arsine was either "ND" or it existed only in trace form in the bay air. The maximum exposure concentration of fluorides was approximately 0.17% of the Korea occupational exposure limits, with hydrofluoric acid at about 0.2%, hydrochloric acid 0.06%, nitric acid 0.05%, isopropyl alcohol 0.4%, and phosphine at about 2%. The maximum exposure concentration of propylene glycol monomethyl ether acetate (PGMEA) was 0.0870 ppm, representing only 0.1% or less than the American Industrial Hygiene Association recommended standard (100 ppm). Conclusion: Benzene, a known human carcinogen for leukemia, and arsine, a hematologic toxin, were not detected in wafer fabrication sites in this study. Among reproductive toxic substances, n-butyl acetate was not detected, but fluorides and PGMEA existed in small amounts in the air. This investigation was focused on the air-borne chemical concentrations only in regular working conditions. Unconditional exposures during spills and/or maintenance tasks and by-product chemicals were not included. Supplementary studies might be required.

Chiral [Iminophosphoranyl]ferrocenes: Synthesis, Coordination Chemistry, and Catalytic Application

  • Co, Thanh Thien;Shim, Sang-Chul;Cho, Chan-Sik;Kim, Dong-Uk;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1359-1365
    • /
    • 2005
  • A series of new chiral [iminophosphoranyl]ferrocenes, {${\eta}^5-C_5H_4-(PPh_2=N-2,6-R_2-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-PPh^2-2-CH(Me)NMe_2$} (1: R = Me, $^iPr$), {${\eta}^5{-C_5H_4-(PPh_2=N-2,6-R_2}^1-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-(PPh_2=N-2,6-R_2-C_6H_3)-2-CH(Me)R_2$} (2: $R^1\;=\;Me,\;^iPr;\;R^2\;=\;NMe_2$, OMe), and $({\eta}^5-C_5H_5)Fe${${\eta}^5-C_5H_4-1-PR_2-2-CH(Me)N=PPh_3$} (3:R = Ph, $C_6H_{11}$) have been prepared from the reaction of [1,1'-diphenylphosphino-2-(N,N-dimethylamino) ethyl]ferrocene with arylazides (1 & 2) and the reaction of phosphine dichlorides ($R_3PCl_{2}$) with [1,1'-diphenylphosphino-2-aminoethyl]ferrocene (3), respectively. They form palladium complexes of the type $[Pd(C_3H_5)(L)]BF_4$ (4-6: L = 1-3), where the ligand (L) adopts an ${\eta}^2-N,N\;(2)\;or\;{\eta}^2$-P,N (3) as expected. In the case of 1, a potential terdentate, an ${\eta}^2$-P,N mode is realized with the exclusion of the –=NAr group from the coordination sphere. Complexes 4-6 were employed as catalysts for allylic alkylation of 1,3-diphenylallyl acetate leading to an almost stoichiometric product yield with modest enantiomeric excess (up to 74% ee). Rh(I)-complexes incorporating 1-3 were also prepared in situ for allylic alkylation of cinnamyl acetate as a probe for both regio- and enantioselectivities of the reaction. The reaction exhibited high regiocontrol in favor of a linear achiral isomer regardless of the ligand employed.

Separation and Recovery of Ce, Nd and V from Spent FCC Catalyst (FCC 폐촉매로부터 Ce, Nd 및 V의 분리 회수 프로세스)

  • Jeon, Sung Kyun;Yang, Jong Gyu;Kim, Jong Hwa;Lee, Sung Sik
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.679-684
    • /
    • 1997
  • The major constituents in spent FCC catalysts are Si, Al, Fe, Ti, alkali metals and some others. The spent catalyst is also composed small amounts of rare metals such as Ce, Nd, Ni and V. The selective adsorption and concentration of Ce and Nd from the leaching solution of spent FCC catalysts with sulfuric acid($0.25mol/dm^3$) were carried out by the column method with a chelate resin having a functional group of aminophosphoric acid type. Ce and Nd were separated from eluate liquor containing Al, Nd and V by the precipitation process with oxalic acid. Vanadium is purified from chloride ion coexistance by solvent extraction, employing tri-n-octyl phosphine oxide as extractant with Al in the raffinate solution. Rare metals with the purity of 99 percent were obtained from the spent FCC catalyst.

  • PDF

Palladium-Catalyzed Carbonylative Homocoupling Reaction of Vinylmercuric Chlorides with Carbon Monoxide (팔라듐 촉매를 이용한 Vinylmercuric-chlorides 의 CO 첨가 호모커플링반응)

  • KimJin-Il 김진일;Kwang-Hyek Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.657-661
    • /
    • 1989
  • Symmetrical divinyl ketone or divinyl ${\alpha}$-diketone was synthesized in moderately good yields through palladium catalyzed carbonylative homocoupling reaction of vinylmercuric chlorides with carbon monoxide. In order to find out optimum synthetic reaction conditions, we examined the effect of catalysts, bases, solvents and reaction temperature when (E)-styrylmercuric chloride was used as a typical starting material. The best yield of divinyl ${\alpha}$-diketone was obtained in the reaction using 10 mol% of dichlorobis(triphenyl phosphine)palladium (II) as a catalyst, an equivalent of pyridine as a base, 10 mol% of iodine and acetonitrile at 50${\circ}$C under 10 atmospheric pressure of carbon monoxide. The yield of divinyl ${\alpha}$-diketone was decreased under atmospheric pressure of carbon monoxide.

  • PDF

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor (고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상)

  • Lee, Eun-Jin;Moon, Jong-Woo;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

Electronic Structure and Electrochemistry of Complexes Trans-bis(tri-phenyl phosphine) Palladium(II) and Nickel(II) with Ligands $(CH_3COO-,\;Cl-\;and\;CO)$ (리간드 $(CH_3COO-,\;Cl-,\;CO)$와 트란스-비스(트리페닐포스핀) 팔라듐(II) 과 니켈(II) 착물들에 대한 전자적구조와 전기화학적 연구)

  • Choe Chil Nam;Jung Oh Jin;Kim Se Bong
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.1
    • /
    • pp.44-50
    • /
    • 1992
  • The ability to account for magnetic and spectra properties of complexes was investigated for the splitting of the degenerate d-orbitals and with nonaqueous solution by UV/vis-spectrophotometric method. The correlation of the magnetitude of 10Dq obtained from the spectra, the pairing energy, and the spin state of the complexes. The electrochemical behavior of complexes were investigated by the use of cyclic voltammetry in aprotic media. These reduction peak of $[(C_6H_5)3_P]_2Pd(II)(CH_3COO)_2$ and $[(C_6H_5)_3Pd]_2Pd(II)Cl_2$ were irreversible one-electron processes at peak $E_{pc1} = -1.32 V,\;E_{pc2} = -1.56 V$ and $E_{pc1} = -1.74 V,\;E_{pc2} = -1.88 V$ of these complexes vs. Ag/AgCl, but nickel complexes were not to be reducible.

  • PDF