• Title/Summary/Keyword: Phosphatidylinositol

Search Result 281, Processing Time 0.024 seconds

The effect of Ginkgo biloba Extract (GB) on Glucose Uptake in L6 Rat Skeletal Muscle Cells (L6 근육세포에서 은행잎 추출물의 당 흡수효과)

  • Kim, Soo-Cheol;Han, Mi-Young;Kim, Hak-Jae;Jung, Kyung-Hee
    • The Korea Journal of Herbology
    • /
    • v.22 no.2
    • /
    • pp.155-161
    • /
    • 2007
  • Objectives: Evidences suggests that Ginkgo biloba, a widely used traditional medicine, shows a hypoglycemic effect. Thus, we investigatd the effect of G. biloba extract (GB) on glucose uptake in L6 rat skeletal muscle cells. Method : Effect of GB on glucose uptake and phosphatidylinositol (PI) 3-kinase activity were assessed using Glucose uptake assay and PI 3-kinase assay, respectively. Also, AMP-activated protein kinase (AMPK), p38 mitogen activated protein kinase (p38 MAPK) expression were identified by Western blot. Results : Glucose uptake assay revealed that GB increased glucose uptake about 2.5-fold compared to thecontrol. GB stimulated the activity of PI 3-kinase which is a major switch element on the glucose uptake pathway. About a 6.5-fold increase in activity of PI 3-kinase was observed with GB. We then assessed the activity of AMPK, another regulatory molecule on the glucose uptake pathway. The result was that GB increased the phosphorylation level of both AMPK ${\alpha}$l and ${\alpha}$2. The activity of p38 MAPK, a downstream mediator of AMPK, was also increased by CB. Conclusion : These results suggest that GB may stimulate glucose uptake through both PI 3-kinase and AMPK mediated pathways in L6 skeletal muscle cells thereby contributing to glucose homeostasis.

  • PDF

Eucommia ulmoides Extract Stimulates Glucose Uptake through PI 3-kinase Mediated Pathway in L6 Rat Skeletal Muscle Cells

  • Hong, Eui-Jae;Hong, Seung-Jae;Jung, Kyung-Hee;Ban, Ju-Yeon;Baek, Yong-Hyeon;Woo, Hyun-Su;Park, Dong-Suk
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.224-229
    • /
    • 2008
  • Eucommia ulmoides (Duchung) is commonly used for treatment of diabetes in Korean traditional medicine. However, the exact mechanism of its anti-diabetic effect has not yet been fully elucidated. In this study, the effect of E. ulmoides extract on glucose uptake was investigated in L6 rat skeletal muscle cells. E. ulmoides extract stimulated the activity of phosphatidylinositol (PI) 3-kinase that is a major regulatory molecule in glucose uptake pathway. Protein kinase B (PKB) and protein kinase C-${\xi}$ (PKC-${\xi}$), downstream mediators of PI 3-kinase, were also activated by E. ulmoides extract. We assessed the activity of AMP-activated protein kinase (AMPK), another regulatory molecule in glucose uptake pathway. Phosphorylation level of AMPK did not change with treatment of E. ulmoides extract. Phosphorylations of p38 mitogen activated protein kinase (p38 MAPK) and acetyl-CoA carboxylase (ACC), downstream mediators of AMPK, were not significantly different. Taken together, our results suggest that E. ulmoides may stimulate glucose uptake through PI 3-kinase but not AMPK in L6 skeletal muscle cells.

Ginsenoside (20S)Rg3 Ameliorates Synaptic and Memory Deficits in an Animal Model of Alzheimer's Disease

  • Kim, Tae-Wan
    • 한국약용작물학회:학술대회논문집
    • /
    • 2011.09a
    • /
    • pp.31-45
    • /
    • 2011
  • The amyloid ${\beta}$-peptide ($A{\beta}$), which originates from the proteolytic cleavage of amyloid precursor protein (APP), plays a central role in the pathogenesis of Alzheimer's disease (AD). Mounting evidence indicates that different species of $A{\beta}$, such as $A{\beta}$ oligomers and fibrils, may contribute to AD pathogenesis via distinct mechanisms at different stages of the disease. Importantly, elevation and accumulation of soluble $A{\beta}$ oligomers closely correlate with cognitive decline and/or disease progression in animal models of AD. In agreement with these studies, oligomers of $A{\beta}$ have been shown to directly affect synaptic plasticity, a neuronal process that is known to be essential for memory formation. Our previous studies showed that $A{\beta}$ induces the breakdown of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a phospholipid that regulates key aspects of neuronal function. PI(4,5)P2 breakdown was found to be a key step toward synaptic and memory dysfunction in a mouse model of AD. To this end, we seek to identify small molecules that could elevate the levels of PI(4,5)P2 and subsequently block $A{\beta}$ oligomer-induced breakdown of PI(4,5)P2 and synaptic dysfunction.. We found that (20S)Rg3, an active triterpene glycoside from heat-processed ginseng, serves as an agonist for phosphatidylinositol 4-kinase IIalpha (PI4KIIalpha), which is a lipid kinase that mediates a rate-limiting step in PI(4,5)P2 synthesis. Consequently, (20S)Rg3 stimulates PI(4,5)P2 synthesis by directly stimulating the activity of PI4KIIalpha. Interestingly, treatment of a mouse model of AD with (20S)Rg3 leads to reversal of memory deficits. Our data suggest that the PI(4,5)P2-promoting effects of (20S)Rg3 may help mitigate the cognitive symptoms associated with AD.

  • PDF

Fractionation and Quantitative Analysis of Lipid Components in Korean Yam (Dioscorea) Tubers (한국산 마의 지질 성분의 분리 및 분석)

  • Chung, Hae-Young
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.509-515
    • /
    • 1994
  • Using the lipids extracted from Korean yam(Dioscorea) tubers, D. batatas, D. aimadoimo and D. japonica, fractionation and identification of lipid components and their fatty acid compositions were analysed. Lipid contents determined by Folch's method in D. batatas, D. aimadoimo and D. japonica were 11.0 mg/g, 11.4 mg/g and 6.6 mg/g, respectively. Lipids extracted were fractionated into neutral lipid, glycolipid and phospholipid by silicic acid column chromatography. The content of neutral lipid was over about 60% in lipid. Neutral lipid was composed of sterol ester, triglyceride, 1,3-diglyceride, 1,2-diglyceride and monoglyceride. Main constituents of glycolipid were acylsterylglycoside, monogalactosyldiglyceride, sterylglycoside, digalactosyldiglyceride and sulfolipid, and phospholipid contained phosphatidylethanolamine, phosphatidylcholine and phosphatidylinositol. The fatty acids of the total lipid and its three lipid fractions were analyzed by GC. The major fatty acids were palmitic and linoleic acids. Content of the saturated fatty acids was less than that of the unsaturated fatty acids.

  • PDF

Salvianolic acid B ameliorates psoriatic changes in imiquimod-induced psoriasis on BALB/c mice by inhibiting inflammatory and keratin markers via altering phosphatidylinositol-3-kinase/protein kinase B signaling pathway

  • Wang, Shoufan;Zhu, Lihong;Xu, Yihou;Qin, Zongbi;Xu, Aiqin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.3
    • /
    • pp.213-221
    • /
    • 2020
  • Salvianolic acid B (SAB) is an active phytocomponent of a popular Chinese herb called Radix Salvia militiorrhiza with numerous biological properties. The anti-psoriasis activity of SAB was examined by evaluating various psoriasis inflammatory and keratin markers against imiquimod (IMQ)-induced psoriasis on BALB/c mice. Totally 50 healthy BALB/c mice were evenly divided into 5 groups including control, drug control (SAB; 40 mg/kg), IMQ-induced psoriasis (5%), IMQ exposure and treated with SAB (40 mg/kg), or standard methotrexate (MTX; 1 mg/kg). Mice supplemented with either SAB or MTX significantly lowered the values of psoriasis area severity index (PASI), erythema, scaling, skin thickness, inflammatory markers (interleukin [IL]-22/23/17A/1β/6) and lipid peroxidation product (malondialdehyde). Also, IMQ exposed BALB/c mice treated with SAB or MTX display lesser histopathological changes with enhanced antioxidant activities (catalase, superoxide dismutase). Moreover, the protein expression of keratin markers (K16 and K17) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling proteins (pAkt/Akt and pPI3K/PI3K) were significantly downregulated after administration with SAB and MTX as compared with IMQ induced mice. Taking together, SAB and MTX significantly ameliorate psoriatic changes by inhibiting psoriatic inflammatory and keratin markers through abolishing PI3K/Akt signaling pathway. However, further studies (clinical trials) are needed to confirm the anti-psoriatic property of SAB before recommending to psoriasis patients.

Vascular Endothelial Growth Factor Inhibits irradiation-induced Apoptosis in Human Umbilical Vein Endothelial Cells (혈관내피세포에서 Vascular Endothelial Growth Factor가 방사선에 의해 유도된 apoptosis에 미치는 영향)

  • Lee Song Jae;Kim Dong-Yun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.165-174
    • /
    • 2002
  • Vascular endothelial growth factor (VEGF) has been identified as a peptide growth factor specific for vascular endothelial cells. In this study, we examined the effect of VEGF on radiation induced apoptosis and receptor/second messenger signal transduction pathway for VEGF effect in human umbilical vein endothelial cells (HUVECs). VEGF was found to protect HUVECs against the lethal effects of ionizing radiation by inhibiting the apoptosis induced in these cells by radiation exposure. VEGF (1-30 ng/ml) dose dependently inhibited apoptosis by irradiation. Pre-treatment with Flt-1 and Flk-l/KDR receptor blocked the VEGF-in duced antiapoptotic effect. Phosphatidylinositol 3'-kinase (PI3-kinase) specific inhibitor, Wortman in and LY294002, blocked the VEGF-induced antiapoptotic effect. These data suggest that VEGF may play an important role in survival of HUVECs due to the prevention of apoptotic cell death caused by some stresses such as ionizing radiation.

  • PDF

Sorting and Function of the Human Folate Receptor Is Independent of the Caveolin Expression in Fisher Rat Thyroid Epithelial Cells

  • Kim, Chong-Ho;Park, Young-Soon;Chung, Koong-Nah;Elwood, Patrick C.
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.395-402
    • /
    • 2002
  • Caveolae are small, flask-shaped, non-clathrin coated invaginations of the plasma membrane of many mammalian cells. Caveolae have a coat that includes caveolin. They have been implicated in numerous cellular processes, including potocytosis. Since the human folate receptor (hFR) and other glycosyl-phosphatidylinositol (GPI)-tailed proteins have been co-localized to caveolae, we studied the caveolin role in the hFR function by transfecting hFR and/or caveolin cDNA into Fischer rat thyroid epithelial (FRT) cells that normally do not express detectable levels of either protein. We isolated and characterized stable clones as follows: they express (1) high levels of caveolin alone, (2) hFR and caveolin, or (3) hFR alone. We discovered that hFR is correctly processed, sorted, and anchored by a GPI tail to the plasma membrane in FRT cells. No difference in the total folic acid binding or cell surface folic acid binding activity were found between the FRT cells that were transfected with hFR, or cells that were transfected with hFR and caveolin. The hFR that was expressed on the cell surface of clones that were transfected with hFR was also sensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) release, and incorporated radiolabeled ethanolamine that supports the attachment of a GPI-tail on hFR. We conclude that the processing, sorting, and function of hFR is independent on the caveolin expression in FRT cells.

Signal Transduction of the Protective Effect of Insulin Like Growth Factor-1 on Adriamycin-Induced Apoptosis in Cardiac Muscle Cells

  • Chae, Han-Jung;Kim, Hyung-Ryong;Bae, Jee-hyeon;Chae, Soo-Uk;Ha, Ki-Chan;Chae, Soo-Wan
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.324-333
    • /
    • 2004
  • To determine whether Insulin-like growth factor (IGF-I) treatment represents a potential means of enhancing the survival of cardiac muscle cells from adriamycin (ADR)-induced cell death, the present study examined the ability of IGF-I to prevent cell death. The study was performed utilising the embryonic, rat, cardiac muscle cell line, H9C2. Incubating cardiac muscle cells in the presence of adriamycin increased cell death, as determined by MTT assay and annexin V-positive cell number. The addition of 100 ng/mL IGF-I, in the presence of adriamycin, decreased apoptosis. The effect of IGF-I on phosphorylation of PI, a substrate of phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase B (AKT), was also examined in H9C2 cardiac muscle cells. IGF-I increased the phosphorylation of ERK 1 and 2 and $PKC{\;}{\zeta}{\;}kinase$. The use of inhibitors of PI 3-kinase (LY 294002), in the cell death assay, demonstrated partial abrogation of the protective effect of IGF-I. The MEK1 inhibitor-PD098059 and the PKC inhibitor-chelerythrine exhibited no effect on IGF-1-induced cell protection. In the regulatory subunit of PI3K-p85- dominant, negative plasmid-transfected cells, the IGF-1-induced protective effect was reversed. This data demonstrates that IGF-I protects cardiac muscle cells from ADR-induced cell death. Although IGF-I activates several signaling pathways that contribute to its protective effect in other cell types, only activation of PI 3-kinase contributes to this effect in H9C2 cardiac muscle cells.

The Role of Phosphatidylinositol 3-kinase and Mitogenic Activated Protein Kinase on the Differentiation of Ovine Preadipocytes

  • Choi, K.C.;Shrestha, S.G.;Roh, S.G.;Hishikawa, D.;Kuno, M.;Tsuzuki, H.;Hong, Y.H.;Sasaki, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1199-1204
    • /
    • 2003
  • The aim of this study was to investigate the role of phosphatidylinositol 3-kinase (PI3 kinase) and the mitogenactivating protein (MAP) kinase pathway on the differentiation of ovine preadipocytes. In order to investigate this issue, we monitored glycerol 3-phosphate dehydrogenase (GPDH) activity during differentiation with specific inhibitors of PI3 kinase and MAP kinase-Erk kinase, LY294002 and PD098059, respectively. The preadipocytes, which were obtained from ovine subcutaneous adipose tissues, were proliferated to confluence and then differentiated to adipocytes in differentiation medium with each inhibitor for 10 days. The confluent preadipocytes and differentiated adipocytes at days 3, 7 and 10 were harvested for assay of GPDH activity. LY294002 inhibited the differentiation program in dose- and day-dependent manners during 10 days of differentiation. PD098059 did not affect GPDH activity during differentiation. Furthermore, the expression of peroxisome proliferator-activated receptor ${\gamma}2$ (PPAR-${\gamma}2$), the representative early gene of differentiation, was markedly reduced by LY294002 treatment, although PD098059 did not change it. Our results demonstrated that the activation of PI3 kinase contributes to the differentiation process of ovine preadipocytes.

Membrane Topology of Helix 0 of the Epsin N-terminal Homology Domain

  • Kweon, Dae-Hyuk;Shin, Yeon-Kyun;Shin, Jae Yoon;Lee, Jong-Hwa;Lee, Jung-Bok;Seo, Jin-Ho;Kim, Yong Sung
    • Molecules and Cells
    • /
    • v.21 no.3
    • /
    • pp.428-435
    • /
    • 2006
  • Specific interaction of the epsin N-terminal homology(ENTH) domain with the plasma membrane appears to bridge other related proteins to the specific regions of the membrane that are invaginated to form endocytic vesicles. An additional $\alpha$-helix, referred to as helix 0 (H0), is formed in the presence of the soluble ligand inositol-1,4,5-trisphosphate [$Ins(1,4,5)P_3$] at the N terminus of the ENTH domain (amino acid residues 3-15). The ENTH domain alone and full-length epsin cause tubulation of liposomes made of brain lipids. Thus, it is believed that H0 is membrane-inserted when it is coordinated with the phospholipid phosphatidylinositol-4,5-bisphosphate [$PtdIns(4,5)P_2$], resulting in membrane deformation as well as recruitment of accessory factors to the membrane. However, formation of H0 in a real biological membrane has not been demonstrated. In the present study, the membrane structure of H0 was determined by measurement of electron paramagnetic resonance (EPR) nitroxide accessibility. H0 was located at the phosphate head-group region of the membrane. Moreover, EPR line-shape analysis indicated that no pre-formed H0-like structure were present on normal acidic membranes. $PtdIns(4,5)P_2$ was necessary and sufficient for interaction of the H0 region with the membrane. H0 was stable only in the membrane. In conclusion, the H0 region of the ENTH domain has an intrinsic ability to form H0 in a $PtdIns(4,5)P_2$-containing membrane, perhaps functioning as a sensor of membrane patches enriched with $PtdIns(4,5)P_2$ that will initiate curvature to form endocytic vesicles.