• Title/Summary/Keyword: Phosphate solubilizing yeasts

Search Result 2, Processing Time 0.019 seconds

Characterization of Phosphate Solubilizing Yeasts from Korean Traditional Fermented Foods (한국 전통 발효식품에서 분리한 인산가용화 효모의 특성)

  • Park, In-Cheol;Kim, Jeong-Seon;Jung, Joo Ae;Yoo, Jae-Hong
    • The Korean Journal of Mycology
    • /
    • v.41 no.4
    • /
    • pp.218-224
    • /
    • 2013
  • Of 1,100 yeast strains which were isolated from various Korean fermented foods, screened for phosphate solubilization, five strains showed the ability to solubilize tricalcium phosphate. The 26S rDNA domain D1-D2 sequence analysis revealed the identification of strain Y393 and Y524 as Pichia anomala (99.8 and 100% identity, respectively), Y669 as Pichia farinosa (100% identity), Y901 as Candida versatilis (100% identity), and Y1101 as Pichia subpelliculosa (100% identity). All the phosphate solubilizing strains showed mesophilic characteristics. The temperature range for growth of 4 strains was $20{\sim}35^{\circ}C$ and P. farinosa Y669 was able to grow up to $45^{\circ}C$. The strain C. versatilis Y907 was able to grow at pH range of 5.0~6.0 and showed halophilic characteristics with tolerance to 15% of NaCl concentration. The Phosphate solubilizing yeast strains were survived well in bed soil for 8 weeks which were maintained densities of $10^7{\sim}10^8$ cfu/g. The highest phosphate solubilizing activity was observed in P. subpelliculosa Y1101. It solubilized 697.2 ug/mL of phosphorus from tricalcium phosphate with decrease in pH from 6.8 to 4.37 after 11 days of inoculation.

Molecular Genetic Identification of Yeast Strains Isolated from Egyptian Soils for Solubilization of Inorganic Phosphates and Growth Promotion of Corn Plants

  • Hesham, Abd El-Latif;Mohamed, Hashem M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.55-61
    • /
    • 2011
  • Forty yeast strains isolated from soils taken from different locations in Egypt were tested for their P-solubilizing activities on the basis of analyzing the clear zone around colonies growing on a tricalcium phosphate medium after incubation for 5 days at $25^{\circ}C$, denoted as the solubilization index (SI). Nine isolates that exhibited P-solubilization potential with an SI ranging from 1.19 to 2.76 were genetically characterized as five yeasts belonging to the genus Saccharomyces cerevisiae and four non-Saccharomyces, based on a PCR analysis of the ITS1-26S region amplied by SC1/SC2 species-specific primers. The highest P-solubilization efficiency was demonstrated by isolate PSY- 4, which was identified as Saccharomyces cerevisiae by a sequence analysis of the variable D1/D2 domain of the 26S rDNA. The effects of single and mixed inoculations with yeast PSY-4 and Bacillus polymyxa on the P-uptake and growth of corn were tested in a greenhouse experiment using different levels of a phosphorus chemical fertilizer (50, 100, and 200 kg/ha super phosphate 15.5% $P_2O_5$). The results showed that inoculating the corn with yeast PSY-4 or B. polymyxa caused significant increases in the shoot and root dry weights and P-uptake in the shoots and roots. The P-fertilization level also had a significant influence on the shoot and root dry weights and P-uptake in the shoots and roots when increasing the P-level from 50 up to 200 kg/ha. Dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 200 kg/ha gave higher values for the shoot and root dry weights and P-uptake in the shoots and roots, yet these increases were nonsignificant when compared with dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha. The best increases were obtained from dual inoculation with yeast strain PSY-4 and B. polymyxa at a P-fertilization level of 100 kg/ha, which induced the following percentage increases in the shoot and root dry weights, and P-uptake in the shoots and roots; 16.22%, 46.92%, 10.09%, and 31.07%, respectively, when compared with the uninoculated control (fertilized with 100 kg/ha).