• Title/Summary/Keyword: Phosphate and Nitrogen

Search Result 796, Processing Time 0.029 seconds

Effects of fallen blossoms of Prunus spp. on nutrient dynamics in an artificial pond ecosystem (벚나무류 낙화가 인공 연못생태계의 물질순환에 미치는 영향)

  • Lee, Bo Eun;Jeon, Young Joon;Jang, You Lim;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.203-208
    • /
    • 2015
  • To identify the effect of fallen cherry blossom on the artificial pond ecosystem, microcosm experiment was conducted into the aquatic decomposition of Prunus species petals. Petals were put in $1mm^2$ mesh nylon litter bags. For treatment group, one flower litter bag was placed into each pot microcosm ($27{\times}20{\times}8cm^3$) filled with influent water from the artificial pond, whereas control group microcosm contained pond water only. Decomposition time were set differently (4, 8, 12, 16 days) among treatment groups. At the end of experiment, most petals were decomposed and only 32.3% of initial dry weight remained with the decay rate (k) of $7.06{\times}10^{-2}day^{-1}$. $NO_3-N$ concentration of microcosm water decreased sharply from 1.90 mg/L at first to 0.02 mg/L, whereas $NH_4-N$ concentration increased from 0.03 mg/L to 2.85 mg/L continually. $PO_4-P$ concentration was 0.03 mg/L at first and increased to 2.39 mg/L by decomposition. Therefore, available phosphorus seems to have leached with higher rate than nitrogen from the petals litter. Increase about 0.02 mg/L in $PO_4-P$ concentration could be estimated in artificial pond from the calculation on the total quantity of fallen blossoms. This result suggests that available phosphorus from the decomposed Prunus petals could cause eutrophication in the artificial pond.

Seasonal Changes in pH and Content of Phosphate, Organic Matter and Exchangeable Cations in Soil Profile of Urea-Fertilized Grassland (요소시용(尿素施用) 초지(草地)의 토양단면(土壤斷面)에서 pH 및 인산(燐酸), 유기물(有機物)과 치환성(置換性) 양(陽)이온 함량의 계절적 변화)

  • Yun, Sun-Gang;Yoo, Sun-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.4
    • /
    • pp.254-259
    • /
    • 1991
  • The present study was carried out to investigate the effect of nitrogen(urea) application on the seasonal change in pH content of Bray No.1-P, organic matter, and exchangeable cations along the grassland soil profile and further to provide the fundamental information for optimizing the rate of fertilizer application to grassland. Soil samples were taken 20cm intervals upto 100cm soil depth in spring(May 26), summer(July 27), and autumn (October 18) of 1990. The obtained results are summerized as follow 1. In spring and summer, soil pH at 0-20cm soil depth of 28kg N/10a treatment was lowered by 0.7 and 1.0 in comparison with those the same soil depth of 0 kg N/10a treatment and the tendency in pH decrease during all season at the soil depth below 20cm was in the order of summer>spring>autumn. 2. Although Bray No.1-P content at the soil depth 0-20cm of 28kg N/10a treatment was lowered by 20ppm compared to 0 kg N/10a treatment in summer, there was no great difference in its content between 0kg N/10a and 28kg N/10a treatment at all soil depth in spring and summer. In autumn, its content at soil depth below 20cm of 28kg N/10a treatment was higher than that of in summer. 3. Organic matter content at 0-20cm soil depth of 0 and 28kg N/10a treatment in autumn was slightly lowered and on the whole there was very little change in it by soil depth and nitrogen application. 4. The calcium content of 0 and 28kg N/10a treatment was also slightly lowered by increase in soil depth and Mg and K contents were below 0.4 and 0.2 me/100g during all seasons, respectively. 5. Positive correlations were shown among the $NH_4-N$ content and pH, organic matter, Ca and Mg of 0 kg N/10a treatment, however, there was negative correlation ($r=-0.534^{*}$) between $NO_3-N$ content and pH of 28kg N/10a treatment in summer.

  • PDF

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area (서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성)

  • Son, Juwon;Shin, Hong-Ryeol;Mo, Ahra;Son, Seung-Kyu;Moon, Jai-Woon;Kim, Kyeong-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.143-156
    • /
    • 2015
  • In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.

Influence of Organic Acids Residual Concentration by the Change of F/M Ratio on Sludge Settleability in Advanced Sewage Treatment Processes (하.폐수 고도처리시 F/M비 변화에 따른 유기산 잔류 농도가 슬러지 침강성에 미치는 영향)

  • Park, Young-Ki;Kim, Young-Il;Kim, Sl-Ki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.42-47
    • /
    • 2006
  • The biological nutrient treatment is formed with repetition and rearrangement of anaerobic, anoxic and oxic tank. In this case, VFAs is generated in the anaerobic tank and the anoxic tank. The VFAs is an important factor for removal of nitrogen and phosphate and SVI. So, in this study I investigated to find a relationship among the generation rate of the VFAs according to the change of F/M ratio and the characteristic which can eliminate organic matter and nitrogen according to the change of residual concentration of the VFAs and the efficiency of the process and also SVI in wastewater treatment. $A^2/O$ process was used for wastewater treatment. F/M ratio was under the control of the change of MLSS concentration. When the F/M ratio was changed from 0.16 to 0.08 kg-BOD/kg-MLSS/day, the VFAs's production volume increased based on the reduction of F/M ratio in batch reaction. And the residual concentration of the VFAs decreased at first and then increased later. SVI and SS were high when F/M ratio was $0.16kg/kg{\cdot}d$ and showed stable status when F/M ratio decreased $0.11{\sim}0.13kg/kg{\cdot}d$. However, SVI and SS continuously increased with decrease of F/M ratio and were high at $0.08kg/kg{\cdot}d$. In the result of comparison between residual concentration of the VFAs and denitrification rate in anoxic tank, the less residual volume of the VFAs was in anoxic tank, the higher denitrification ratio became. The optimal residual-concentration of the VFAs considering SVI and removal efficiency of nitrogenwas $1.4{\sim}2.2mg/L$. At that time F/M ratio was $0.11{\sim}0.13$ kg-BOD/kg-MLSS/day.

Influence of Soil Texture and Bulk Density on Root Growth Characteristics and Nutrient Influx Rate of Soybean Plant (토성(土性)과 용적밀도(容積密度)가 대두(大豆)의 뿌리 생장특성(生長特性)과 양분흡수기능(養分吸收機能)에 미치는 영향(影響))

  • Jung, Yeong-Sang;Lim, Hyung-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.3
    • /
    • pp.221-227
    • /
    • 1989
  • This study was conducted to understand the influence of soil compaction on root growth and nutrient uptake characteristics of the soybean roots grown in two soils with different texture. Tap root elongation was measured on young seedling grown in cores compacted to different bulk densities of 1.2, 1.4 and $1.6/cm^3$ with different soil water retention in laboratory. The soil used were Samgag sandy loam and Baegsan loam soils. The wet and dry weight, total length, average radius and total surface area of roots were measured on soybean plants grown in 1/5000 a Wagner pots compacted to different bulk density of 1.2 and $1.4g/cm^3$. The nutrient uptake of soybean shoot was measured and evaluated with the unit surface area of roots at the 7th, 17th and 27th days after germination. The results were as follows: 1. The tap root elongation rate was faster in the loam soil with low bulk density than in the sandy loam soil with high bulk density. The elongation rates were remarkedly decreased when soil water was lower than the retention of 4 bars in loam soil and that of 1 bars in sandy loam soil. 2. Tap root elongation rate sharply decreased as increased soil strength higher than $2kgf/cm^2$ measured by ELE penetrometer showing curvillinear regression. However, it was low regardless of soil strength when soil water retention was 10 bars in sandy loam soil. 3. From the pot experiment, the total length of roots were longer in loam soil than in sandy loam soil and was longer in the soils with lower bulk density. The average radius of fine roots grown in sandy loam soil was larger than that grown in loam soil. The total surface area of roots was greater in the loam soil with low bulk density than in the sandy loam soil with high bulk density as the total length of roots. 4. The amounts of nutrient uptake by soybean shoots were greater in loam soil primarily due to more production of dry matter than in sandy loam soil. The nitrogen influx rates through the unit surface area were 597 to $753nmoles/day-cm^2$ in loam soil and 222 to $365nmoles/day\;cm^2$ in sandy loam soilshowing higher value in higher bulk density. The potasium influx rates were 99 to $175nmoles/day-cm^2$, and those of phosphate were 26 to $46nmoles/day\;cm^2$. Those of Ca and Mg were 175 to 246 and 163 to $205nmoles/day\;cm^2$. The difference in nutrient influx rates between bulk densities of these elements were lower than that of nitrogen.

  • PDF

An Investigation of the Sources of Nitrate Contamination in the Kyonggi Province Groundwater by Isotope Ratios Analysis of Nitrogen (질소 동위 원소 분석을 이용한 경기도 지역 지하수 중 질산태 질소 오염원 구명)

  • Yoo, Sun-Ho;Choi, Woo-Jung;Han, Gwang Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • $^{15}N$-Isotope concentrations of groundwater from l4 wells with different land-use types in Kyonggi Province were measured to investigate the nitrate contamination sources. Water samples were collected monthly from January to December 1997 and analyzed for pH. PC, anions (fluoride, chloride, nitrate, sulfate, inorganic phosphate, and bicarbonate), and canons (calcium, magnesium, potassium, and sodium). For the analysis of the $^{15}N/^{14}N$ ratio as ${\delta}^{15}N$, $N_2$ samples were prepared through Kjeldahl-Rittenberg method and were analyzed using an isotope ratio mass spectrometer (VG Optima IRMS). Reproducibility of the method and precision of the IRMS were below 1.0‰ and 0.1‰, respectively. The ionic composition of each groundwater sample was only slightly different according to the land-use type. The nitrate concentrations of groundwater in cropland or livestock farming areas were higher than those in the residential area. The percentages of nitrate to total anions of groundwater samples from the livestock farming area were higher than those of other areas. The ${\delta}^{15}N$ values of ammonium sulfate, urea, groundwater sample in the non-contaminated area, and water from the animal manure septic tank were -2.7, 1.4, 5.5, and 27.2‰, respectively. Based on the ${\delta}^{15}N$ values, the sources of nitrate could be classified as originated from chemical fertilizers with ${\delta}^{15}N$ values below 5% and as from animal manure or municipal waste with ${\delta}^{15}N$ values over 10‰. In most cases, contamination sources investigated from ${\delta}^{15}N$ values of groundwater samples were correlated with the specific sources according to the land-use types. However, some ${\delta}^{15}N$ values did not matched the apparent land-use types, and there were seasonal variations of ${\delta}^{15}N$ values within the same well. These results suggest that the groundwater quality was affected by two or more contamination sources and the contribution of each source to the groundwater quality varied depending on the sampling season.

  • PDF

Sudies on the of $K_2O$Fertilization for the Pasturu Improvement (초지개량에 미치는 가리시비의 효과에 관한 연구)

  • 권순기;김용국;김문규
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.3 no.1
    • /
    • pp.17-25
    • /
    • 1982
  • To clarify the direct effect of potassium and interactions with nitrogen and phosphorus on the yield of pasture plants, fertilizer experiment with varied levels of potassium and nitrogen treatment to grass single seeding, legume single seeding and grass-legume mixed seeding, was conducted for three years from 1977 to 1980. The summary of obtained experimental result may be described as below: 1. Potassium application, at any level of amount, did not show its effect to the establishment of plant population, however potash application responded to help winter hardiness at grass single seeding plot. 2. Potassium effect on the fresh yield at grass single seeding was distinct however, not clear effect was observed at legume single seeding and grass-legume mixed seeding plots. 3. For drymatter yield, the highest yield at legume single seeding was recorded 1.152 Kilograms per 10a are at treatment #4 and the highest yields of grass-legume mixed seeding and grass were recorded 1,093 kilograms (Treatment #3) and 834 kilograms (Treatment #5) respectively. 4. In observation of plant succession, they were found that orchardgrass and tall fescue have increased at grass single seeding plot and Alfalfa was dominant over 90 per cent of plant population at legume single seeding and grass-legume mixed seeding plots. It seems that potash effect was distinct in increasing orchardgrass population. 5. The results of this experiment shown that the maximum yield from grass single seeding was obtained at the plat where applied 20-20-30 kg/10a, $N-P_2O_5-K_2O$ and the maximum yield from legume single seeding was obtained at the plot applied with 8-20-20 kg/10a, $N-P_2O_5-K_2O$. 6. Fertilizer cost for producing one kilogram of dry matter in this experiment was lowest at treatment #1 of grass-legume mixed seeding and highest at treatment #5 of grass single seeding. The largest gross income was obtained from the plots where phosphate application was omitted. 7. From the results of this experiment, it may be recommended that economically optimum fertilizer application for grass single seeding will be 20-20-20- kg/10a, $N-P_2O_5-K_2O$ and for legume single seeding and grass-legume mixed seeding will be 8-20-20 kg/10a, $N-P_2O_5-K_2O$.

  • PDF

Evaluation of Basic Oxygen Furnace Slag as Soil Conditioner in the Soybean Upland Field (밭토양 콩재배에서 제강슬래그의 토양개량제로서의 시용 효과)

  • Lim, June-Taeg;Kim, Hee-Kwon;Park, In-Jin;Lee, Choong-Il;Hyun, Kyu-Hawn;Kwon, Byung-Sun;Kim, Hak-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.493-497
    • /
    • 2000
  • An experiment was conducted to evaluate the possibility of using basic oxygen furnace (BOF) slag as soil conditioner in soybean upland field. In 1997, soybean (Glycine max L. cv. Eunha) crop was cultivated under different application rates of BOF slag at an experimental field of Chonnam Rural Development Administration in Nampyung, Najoo city. Five treatments, four application rates of BOF slag (0, 4, 8, $12Mg\;ha^{-1}$) and one application rate of lime ($2Mg\;ha^{-1}$) were tried with three replications. Plant height and shoot dry weight per plant were measured five times during the growth period. Chemical contents of soybean plant tissues and soil were also measured at the same sampling date. Yield were estimated by harvesting $6.6m^2$ per experimental unit and yield components were measured by sampling 10 plants per experimental unit at the harvest date. In upland soil, application of BOF slag rarely affected contents of total nitrogen, organic matter, available phosphate and potassium in soil. Soil pH, and contents of Ca and Fe in soil became higher as BOF slag rate increased. Enhancement of soil pH by application of BOF slag appeared to be closely related with increase in soil Ca content. Application rate of $2Mg\;ha^{-1}$ of lime showed almost the same effect in increase of soil Ca content as application rate of $4{\sim}8Mg\;ha^{-1}$ of BOF slag. Slag treatment hardly affected the contents of total nitrogen, $P_2O_5$, CaO, $K_2O$ and MgO in the shoot of soybean plants. Soybean plants under treatments of BOF salg showed better growth from the earlier growth stage compared with those of control treatment, and at the later growth stage, their growth was even superior to that of lime treatment. BOF slag rate of $8Mg\;ha^{-1}$ showed the highest soybean yield with $1,232kg\;ha^{-1}$. which was $330kg\;ha^{-1}$ or 37% higher than the yield of control with $902kg\;ha^{-1}$, As a result, BOF slag appeared to be useful material as a soil conditioner as well as nurient source for Ca and Fe in upland soybean fields, and its optimal rate for higher yield seemed to be around $8Mg\;ha^{-1}$.

  • PDF

Changes of soil characteristics, rice growth and lodging traits by different fertilization and drainage system in paddy soil (논 토양에서 배수 및 시비조건에 따른 토양특성, 생육 및 도복 관련 형질의 변화)

  • Jeon, Weon-Tai;Park, Chang-Young;Park, Ki-Do;Cho, Young-Son;Lee, Jeom-Sig;Lee, Dong-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.3
    • /
    • pp.153-161
    • /
    • 2002
  • The installation of subsurface drainage equipment is required for generalized use of paddy field and to improve soil productivity. The internal drainage of paddy field has improved root condition from the increasing of oxygen supply and removing noxious elements. This experiment was carried out to determine the effects of fertilization and drainage system on soil characteristic, growth and lodging trait of rice in paddy soil. A subsurface drainage system was installed a depth of 0.8m. Three fertilizer treatments were applied : 1) Conventional fertilized plot, 2) Controlled-release fertilized plot, 3) No-fertilized plot. In conventional plot, 110 kg N (as urea 46%), 45 kg P (as fused phosphate 20%) and 57 kg K (as potassium chloride 60%) per hectare fertilizers were applied. Controlled-release fertilizer was applied by 70% of N compared to the conventional plot. During the rice cropping, the water depth decrease was two times higher in subsurface drainage(SD) plot than non-drained(ND) plot. After harvesting of rice, the bulk density of sub-soil(10-20cm depth) was lower in SD plot than ND plot. After the experiment, the surface soil pH was high at SD plot but sub-soil was high at ND plot. Organic matter content was higher in all soil layer for SD plot than fro ND plot. Available $P_2O_5$ was not different between SD and ND plot for surface soil, but was high for SD plot for sub soil. The $NH_4{^+}-N$ content of soil, shoot dry matter, total nitrogen and $K_2O$ of rice plant were greater after panicle formation stage in SD plot. Total nitrogen content, $P_2O_5$ and $K_2O$ of rice root were high in SD plot after heading. Though the gravity center and 3rd internode length were greater, pulling force of rice root was higher in SD plot than ND plot. Rice yield in SD plot were low at conventional and controlled-release fertilized plot because of the greater field lodging, but yield in SD plot was high at no-fertilized plot. This study indicates that the fertilization level should be decrease on subsurface drainage system for rice cropping.

Effect of Feeding Lactobacillus reuteri to Broiler on Growing Performance, Intestinal Microflora and Environmental Factor (lactobacillus reuteri의 급여가 육계의 성장 특성, 장내미생물 변화, 혈청 성상 및 사육환경에 미치는 영향)

  • 김상호;박수영;이상진;류경선
    • Korean Journal of Poultry Science
    • /
    • v.30 no.1
    • /
    • pp.17-28
    • /
    • 2003
  • A feeding trial was carried out to evaluate the effects of feeding Lactobacillus reuteri culture(LRC) on the performance, nutrients digestibility, intestinal microflora, serum metabolites, ammonia generation and litter dampness in broiler chicks. Four hundred eighty, one day old male chicks were fed into none, 0.1, 0.2 and 0.4% of LRC supplementation fer seven weeks. Basal diets excluded antibiotics contained ME 3,100, 3,100 kcal/kg, and CP 22.0, 20.0% for starter and grower, respectively. Weight gain of chicks fed LRC was significantly higher than no supplemental group in overall period(P<0.05). Feed intake was the highest in the 0.1% LRC, but not statistically different from other treatments. Feed conversion showed no significance among treatments. Viable Lactobacillus spp. number of chicks fed 0.2 and 0.4% LRC was significantly higher in cecum at seven weeks of age compared to the none(P<0.05). The tendency of anaerobes number was similar to Lactobacillus spp in ileum and cecum. Total number of E. coli and Salmonella were no difference in all treatments. In serum metabolites, feeding LRC increased triglyceride, and inorganic phosphorus, but no different total protein, albumin, total cholesterol, glucose, blood urea nitrogen and Ca. Nutrients digestibility improved significantly in 0.4% LRC compared to that of none(P<0.05). Fecal NH$_3$, gas generation was greatly decreased in the LRC supplemental groups(P<0.05). Moisture contents of bedding was also significantly decreased in LRC feeding group. It was concluded from the present study that feeding Lactobacillus reuteri culture improved the growth performance and nutrients digestibility of broiler chicks and minimize the fecal noxious gas emission.