• 제목/요약/키워드: Phosphate adsorption

검색결과 174건 처리시간 0.027초

표면 개질된 메조기공실리카를 이용한 수중의 인 제거 (Surface modified mesoporous silica (SBA-15) for phosphate adsorbents in water)

  • 이승연;최재우;이상협;이해군;이기봉;홍석원
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.719-724
    • /
    • 2011
  • The excessive phosphate in water causes eutrophication which destroys water environment. In this study, mesoporous silica was synthesized and several functional groups were attached on it. Samples were tested to identify the ability to remove phosphate. The structures of synthesized materials were analyzed by X-ray diffractions (XRD), Fourier transform-infrared (FT-IR) and surface area analysis, Brunauer-Emmett-Teller (BET). To determine the maximum phosphate adsorption capacities and sorption rate, the equilibrium test and kinetic test was conducted. Among functionalized SBA-15 samples, pure SBA-15 didn't adsorb phosphate but Al-SBA-15 and Ti-SBA-15 showed good performances to remove phosphate. The maximum phosphate adsorption capacity of Al-SBA-15 was efficient compared to other adsorbents.

카올리나이트 KGa-1b(표준 점토)의 인산염 흡착 특성 (Phosphate Adsorption of Kaolinite KGa-1b (Source Clay))

  • 조현구
    • 한국광물학회지
    • /
    • 제19권4호
    • /
    • pp.247-258
    • /
    • 2006
  • 카올리나이트 KGa-1b (표준 점토)의 인산염 흡착 특성을 규명하기 위하여 벳치(batch) 흡착 실험을 실시하였다. 인의 함량은 UV 분광분석기를 시용하여 측정하였으며, 이 때 파장은 820 nm를 이용하였다. 반응 시간을 달리하면서 실험한 결과 카올리나이트의 인산염 흡착 반응 중 매우 빠른 반응은 $0{\sim}12$시간 사이에서 발생하며, 12시간 이후에는 천천히 일어나는 반응이 일어나는 것으로 판단된다. 인산염 용액과 반응하는 카올리나이트의 양이 0.25 g에서 0.50 g을 거쳐 1.0 g으로 증가함에 따라 흡착률은 대체로 증가하는 경향을 보인다. 회전하는 교반기를 사용하였을 경우, 회전하지 않는 교반기를 사용할 때에 비하여 흡착률이 약 $11{\sim}15%$ 정도 증가하였다. 배경전해질 KCl의 농도가 $0.01M{\sim}0.1M$ 사이에서는 농도 변화가 흡착에 거의 영향을 미치지 못하는 것으로 보아, 인산염은 내부권 복합체로 존재하는 것으로 판단된다. 그러나 농도가 1.0 M로 증가할 때 흡착량이 감소하는데, 이것은 외부권 복합체로도 존재 가능함을 시사하고 있다. pH가 증가하면 대체적으로 인산염의 흡착량은 감소하는 경향을 나타내고 있으며, 카올리나이트 KGa-1b를 이용한 인산염 흡착은 랑미어 흡착등온선에 더욱 잘 부합하는 경향을 보여주고 있다.

탈착 용액의 조성변화가 층상이중수산화물에 흡착된 인 탈착에 미치는 영향 (The Effect of Phosphate Desorption Solution on LDH (Layered Double Hydroxide) Desorption)

  • 정용준
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.670-675
    • /
    • 2008
  • Batch type adsorption and desorption tests were performed with different types (Powder, Granule) of Layered double hydroxides (LDHs) saturated with phosphate. The adsorption isotherm was approximated as a modified Langmuir type equation. The maximum adsorption capacity was 55 mg-P/g-LDH for powder type LDH, and 46 mg-P/g-LDH for granule type LDH. The highest phosphate desorption (79.6%) was obtained with 20% NaOH solution, whereas the desorption degrees were 4.8, 22.2% and 46.7% in the solutions of acidic condition (pH 4), 30% NaCl, and 3% NaOH, respectively. It was suggested that the optimal condition for the phosphate desorption from LDH was 30% NaCl + 3~6% NaOH solutions. The desorption characteristics of LDH was little influenced by adsorbent type.

탄소강관에서의 인산염 부식억제제농도 감소의 반응속도상수 평가 (Adsorption rate of Phosphate Corrosion Inhibitor in Carbon Steel pipe)

  • 우달식;황병기
    • 환경영향평가
    • /
    • 제14권1호
    • /
    • pp.17-24
    • /
    • 2005
  • This study was performed to evaluate the adsorption rate of phosphate corrosion inhibitor and reaction rate constant in drinking water distribution systems. The optimum concentration of corrosion inhibitor would vary depending on the quality of water, pipe materials, and condition of metal surfaces. The current adsorption study indicated that the residual phosphate concentration of the corrosion inhibitor decreased with the time as it adsorbed on the surface of pipe material. As time went by, the residual phosphate concentration became constant. It means that the formation of the corrosion protection film on metal surfaces is completed.

금속담지 활성탄의 인산염 흡착특성 (Phosphate Adsorption on Metal-Impregnated Activated Carbon)

  • 황민진;황유식;이원태
    • 대한환경공학회지
    • /
    • 제37권11호
    • /
    • pp.642-648
    • /
    • 2015
  • 수계에 존재하는 인산염의 흡착제거 용량을 향상시키기 위하여, 참나무 기반 활성탄을 제조하였으며, 이때 $Fe^{3+}$$Al^{3+}$이온의 혼합물을 흡착제 표면에 담지 하였다. 금속담지 활성탄의 인산염의 흡착용량은 금속이온으로 표면을 개질 하지 않은 활성탄에 비해 약 8배 높게 나타났다. 흡착평형량은 흡착반응의 온도가 증가할수록 증가하였으며, Langmuir 흡착등온식의 경향과 일치하였다. 제조된 금속담지 활성탄의 인산염 흡착제거공정은 흡열의 자발반응으로 진행되었음을 확인하였다. 흡착공정의 거동과 제거속도를 평가하기 위하여, 세공확산모델을 통해 내부 확산계수를 산출하였으며, 이는 실험결과와 매우 일치하였다.

$^{31}$P NMR을 이용한 카올리나이트에 흡착된 인산염의 연구 (A Study of Phosphate Adsorption on Kaolinite by $^{31}$P NMP Spectroscopy)

  • 김영규
    • 한국광물학회지
    • /
    • 제13권4호
    • /
    • pp.186-195
    • /
    • 2000
  • To study phosphate adsorption on kaolinite, $^{31}$ P MAS NMR(magic angle spinning nuclear magnetic resonance spectroscopy)has been used for kaolinite reacted in 0.1 M phosphate solutions at pH’s from 3 to 11. There are at least 3 different forms of phosphate on kaolinite. One is the phosphate physically adsorbed on kaolinite surface (outer-sphere complexes) or species left after vacuum-filtering. The second is the phosphate adsorbed by ligand exchange (inner-sphere complexes), and the third is Al-phosphate precipitates which are pH dependent. Most of the inner-spherer complexes and surface precipitates are mainly on hydroxided Al(aluminol) rather than hydroxided Si(silanol). These are pertinent with the results obtained from the phosphate adsorption experiments on silica gel and ${\gamma}$-Al$_2$O$_3$ as model compounds, respectively. The two peaks with more negative chemical shifts(more shielded) than the ortho-phosphate peak (positive chemical shift) are assigned to be the inner-sphere complexes and surface precipitates. The $^{31}$ P chemical shifts of the Al-phosphate precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates are more negative than those of inner-sphere complexes at a given pH due to the larger number of P-O-Al linkages per tetrahedron. The chemical shifts of both the inner-sphere complexes and surface precipitates become progressively less shielded with increasing pH. For the inner-sphere complexes, decreasing phosphate protonation combined with peak averaging by rapid proton exchange among phosphate tetrahedra with different numbers of protons is though to be the reason for the peak change. The decreasing shielding with increasing pH for surface precipitates is probably due to the decreasing average number of P-O-Al linkages per tetrahedron combined with decreasing protonation like inner-sphere complexes.

  • PDF

전이금속 이온에 대한 주석 인산염의 선택적 흡착에 관한 물리화학적 특성 (Physicochemical Characteristics of Selective Adsorption of Tin Phosphate on the Transition metal ions)

  • 안범수
    • 한국응용과학기술학회지
    • /
    • 제37권5호
    • /
    • pp.1222-1228
    • /
    • 2020
  • Tin bis(monohydrogen orthophosphate) monohydrate 물질의 흡착 성질에 관하여 KCl 수용액을 통하여 조사하였다. 금속이온 농도와 pH를 변화시키면서 어떻게 달라지는지 화학평형에 바탕을 두고 data를 분석하였다. 금속이온들의 흡착 data는 Langmuir 흡착식에 넣어 Langmuir 수치들을 얻는 데 사용되었다. Tin phosphate는 산성에서 이온교환 화합물로 작용하였으며, 2가의 전이금속이온에 대해 Cu+2 > Co+2 > Ni+2의 순서로 선택적 흡착성질을 나타내었다. 약한 산성 이온 교환체에서와 같이 금속이온의 교환은 tin phosphate의 선택성을 결정하는데 결정적 역할을 하였다. 모든 경우에서 흡착의 정도는 온도와 농도의 증가와 함께 증가하였다. Lnngmuir 수치들은 흡착과정 동안의 엔트로피, 엔탈피, 자유에너지 변화량같은 열역학적 함수들을 계산하는데 이용되었다.

티타늄과 실리콘 기반의 메조구조체를 이용한 수중의 인 제거 (Phosphate removal in water by mesostructure based on titanium and silica)

  • 이승연;최재우;이상협;이기봉;홍석원
    • 상하수도학회지
    • /
    • 제25권5호
    • /
    • pp.725-730
    • /
    • 2011
  • In this study, it was investigated that the feasibility of utilizing inorganic mesostructures for removal of phosphate in water. The comparison of the efficiency for phosphate adsorption between inorganic mesostructures was conducted. X-ray diffraction(XRD) and Brunauer-Emmett-Teller(BET) methods were used to characterize these mesostructures. The efficiencies of silica and titanium mesostructures for the removal of phosphate from aqueous solution were investigated. Equilibrium data were analyzed using the Langmuir isotherm. The maximum adsorption capacities of mesostructure adsorbents were found to be 49.3 and 19.5 mg $g^{-1}$ for the titanium and silica mesostructures, respectively. The adsorption kinetics was described by a pseudo third-order kinetic model. The results from this study indicated that the titanium mesostructure has the potential to be utilized for the cost-effective removal of phosphate from wastewater.

소성 굴패각에 의한 인산염의 흡착특성 및 메커니즘 (Characteristics and Mechanisms of Phosphate Sorption by Calcined Oyster Shell)

  • 박종환;허재영;이수림;이재훈;황세욱;조현지;권진혁;장영호;서동철
    • 한국환경농학회지
    • /
    • 제40권1호
    • /
    • pp.40-48
    • /
    • 2021
  • BACKGROUND: Although the calcined oyster shell can be used as a calcium-rich adsorbent for phosphate removal, information about it is limited. The purpose of this study was to evaluate the phosphate adsorption characteristics and its mechanism using calcined oyster shells. METHODS AND RESULTS: In this study, calcined oyster shell (C-OS600) was prepared by calcining oyster shells (P-OS) at 600℃ for 20 min. Phosphate adsorption by C-OS600 was performed under various environmental conditions. Phosphate adsorption by C-OS600 occurred rapidly at the beginning of the reaction, and the time to reach equilibrium was less than 1 h. The optimal isotherm and kinetic models for predicting the adsorption of phosphate by C-OS600 were the Langmuir isotherm and pseudo-second order kinetic model, respectively, and the maximum adsorption capacity derived from the Langmuir isotherm was 68.0 mg/g. The adsorption properties of phosphate by C-OS600 were dominantly influenced by the initial pH and C-OS600 dose. In addition, SEM-EDS and FTIR analysis clearly showed a difference in C-OS600 before and after phosphate adsorption, which proved that phosphate was adsorbed on the surface of C-OS600. CONCLUSION: Overall, the calcined oyster shell can be considered as an useful and effective adsorbent to treat wastewater containing phosphate.

하수고도처리에서 층상이중수화물을 이용한 인산 이온교환 특성 (Characteristics of Ion Exchange of Phosphate using Layered Double Hydroxides in Advanced Wastewater Treatment)

  • 송지현;신승규;이상협;박기영
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.991-995
    • /
    • 2006
  • The layered double hydroxide with the insertion of chloride ions (LDH-Cl), which was synthesized by the co-precipitation method, was applied to investigate the fundamental aspects of the absorptive agent for phosphate removal from wastewater. The adsorption capacity was best described by the Langmuir-FreundIich isotherm, and the estimated isotherm parameters indicate that the LDH-CI capacity for the phosphate removal is much higher than that observed using a natural adsorbent material such iron oxide tailing. The kinetic experiment also showed that the LDH-Cl adsorption reaction rapidly at the adsorptive rate of 0.55 mg-P/g-LDH/min, implying that this adsorbent can be of use in the full-scale applications. The pH had a minimal effect on the LDH adsorption capacity in the range of 5 to 11, although the capacity dropped at the low pHs because of the change in LDH surface properties. Furthermore, other anions such as $Cl^-$ and $NO_3{^-}$ commonly found in the wastewater streams insignificantly affected the phosphate removal efficiencies, while $HCO_3{^-}$ ions had a negative effect on the LDH adsorption capacity due to its high selectivity. The phosphate removal experiment using the actual secondary effluent from a wastewater treatment plant showed the similar decrease in adsorption capacity, indicating that the bicarbonate ions in the wastewater were competing with phosphate for the adsorptive site in the surface of the LDH-Cl. Overall, the synthetic adsorbent material, LDH-Cl, can be a feasible alternative over other conventional chemical agents, since the LDH-Cl exhibits the high phosphate removal capacity with the low sensitivity to other environmental conditions.