• Title/Summary/Keyword: Phonon band

Search Result 58, Processing Time 0.023 seconds

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Optimized Thermoelectric Properties in Zn-doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.32 no.6
    • /
    • pp.287-292
    • /
    • 2022
  • Magnesium-antimonide is a well-known zintl phase thermoelectric material with low band gap energy, earth-abundance and characteristic electron-crystal phonon-glass properties. The nominal composition Mg3.8-xZnxSb2 (0.00 ≤ x ≤ 0.02) was synthesized by controlled melting and subsequent vacuum hot pressing method. To investigate phase development and surface morphology during the process, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were carried out. It should be noted that an additional 16 at. % Mg must be added to the system to compensate for Mg loss during the melting process. This study evaluated the thermoelectric properties of the material in terms of Seebeck coefficient, electrical conductivity and thermal conductivity from the low to high temperature regime. The results demonstrated that substituting Zn at Mg sites increased electrical conductivity without significantly affecting the Seebeck coefficient. The maximal dimensionless figure of merit achieved was 0.30 for x = 0.01 at 855 K which is 30% greater than the intrinsic value. Electronic flow properties were also evaluated and discussed to explain the carrier transport mechanism involved in the thermoelectric properties of this alloy system.

Electron Transport and Magneto-optical Properties of Magnetic Shape-memory $Ni_2NnGa$ Alloy

  • Lee, Y.P.;Lee, S.J.;Kim, C.O.;Jin, X.S.;Zhou, Y.;Kudryavtsev, Y.V.;Rhee, J.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.1
    • /
    • pp.12-15
    • /
    • 2002
  • The physical properties, including magneto-optical and transport ones, of Ni$_2$MnG$_2$ alloy in the martensitic and austenitic states were investigated. The dependence of the temperature coefficient of resistivity on temperature shows kinks at the structural and ferro-para magnetic transitions. Electron-magnon and electron-phonon scattering are analyzed to be the dominant scattering mechanisms of the Ni$_2$MnG$_2$ alloy in the martensitic and austenitic states, respectively. The experimental real parts of the off-diagonal components of the dielectric function present two sharp peaks, one at 1.9 eV and the other at 3.2 eV, and a broad shoulder at 3.5 eV, all are identified by the band-structure calculations. These peak positions are coincident with those in the corresponding optical-conductivity spectrum, which is thought to originate from the single-spin state in Ni$_2$MnG$_2$ alloy.

  • PDF

The Temperature- and Field-dependent Impact ionization Coefficient for Silicon using Monte Carlo Simulation (Monte Carlo 시뮬레이션을 이용한 Si 임팩트이온화계수의 온도 및 전계 특성)

  • 유창관;고석웅;김재홍;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.451-454
    • /
    • 2000
  • The impact ionization(I.I.) is necessary to analyze carrier transport properties under the influence of high electric field. The full band I-k relation and Fermi's golden rule are used for the calculation of impact ionization rate. We have investigated the temperature- and field-dependent impact ionization coefficient for silicon using full band Monte Carlo simulation. The impact ionization coefficients calculated by our impact ionization model are agreed with experimental data at look. We know that impact ionization coefficients and electron energies are decreasing along increasing temperature due to increase of phonon scattering, especially by emission. The logarithm of impact ionization coefficients are fitted to linear function for temperature and field. The residuals of linear function are within the error bound of 5%. We know logarithmic impact ionization coefficients are linearly dependent on temperature and field.

  • PDF

A Study on the Temperature- and Field-Dependent Impact ionization for GaAs (GaAs임팩트이온화의 온도와 전계의존특성에 대한 연구)

  • 고석웅;유창관;김재홍;정학기;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.460-464
    • /
    • 2000
  • As device dimensions are lastly scaled down, impact ionization(I.I.) events are very important to analyze hot carrier transport in high energy region, and the exact model of impact ionization is demanded on device simulation. We calculate full band model by empirical pseudopotential method and the impact ionization rate is derived from modified Keldysh formula. We calculate impact ionization coefficients by full band Monte Carlo simulator to investigate temperature-and field-dependent characteristics of impact ionization for GaAs. Resultly impact ionization coefficients are In good agreement with experimental values at 300k. We know energy is increasing along increasing the field. while energy is decreasing along increasing the temperature since the phonon scattering rates for omission mode are very high at high temperature. The logarithmic fitting function of impact ionization coefficients is described as a second orders function for temperature and field. The residuals of the logarithmic fitting function are mostly within 5%. We know, therefore, logarithm of impact ionization coefficients has quadratic dependence on temperature and field, and we can save time of calculating the temperature- and field-dependent impact ionization coefficients.

  • PDF

On the Crystal Growth of Gap by Synthesis Solute Diffusion Method and Electroluminescence Properties. (합성용질확산법에 의한 GaP결정의 성장과 전기루미네센스 특성)

  • Kim, Seon-Tae;Mun, Dong-Chan
    • Korean Journal of Materials Research
    • /
    • v.3 no.2
    • /
    • pp.121-130
    • /
    • 1993
  • The GaP crystals were grown by synthesis solute diffusion method and its properties were investigated. High quality single crystals were obtained by pull-down the crystal growing ampoule with velocity of 1.75mm/day. Etch pits density along vertical direction of ingot was increased from 3.8 ${\times}{10^4}$c$m^{-2}$ of the first freeze to 2.3 ${\times}{10^5}$c$m^2$ of the last freeze part. The carrier concentration and mobilities at room temperature were measured to 197.49cc$m^2$/V.sec and 6.75 ${\times}{10^{15}}$c$m^{-3]$, respectively. The temperature dependence of optical energy gap was empirically fitted to $E_g$(T)=[2.3383-(6.082${\times}{10^{-4}}$)$T^2$/(373. 096+TJeV. Photoluminescence spectra measured at low temperature were consist with sharp line-spectra near band-gap energy due to bound-exciton and phonon participation in band edge recombination process. Zn-diffusion depth in GaP was increased with square root of diffusion time and temperature dependence of diffusion coefficient was D(Tl = 3.2 ${\times}{10^3}$exp( - 3.486/$k_{\theta}$T)c$m^2$/sec. Electroluminescence spectra of p-n GaP homojunction diode are consisted with emission at 630nm due to recombination of donor in Zn-O complex center with shallow acceptors and near band edge emission at 550nm. Photon emission at current injection level of lower than 100m A was due to the band-filling mechanism.

  • PDF

Structural and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates (산소와 수소 플라즈마로 처리한 사파이어 기판 위에 성장된 ZnO 박막의 구조적.광학적 특성)

  • Lee, S.K.;Kim, J.Y.;Kwack, H.S.;Kwon, B.J.;Ko, H.J.;Yao, Takafumi;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.463-467
    • /
    • 2007
  • Structure and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates by plasma-assisted molecular beam epitaxy (denoted as samples A and B, respectively) have been investigated by various techniques. The crystal quality and structural properties of the surface for the ZnO epilayers were investigated by high-resolution X-ray diffraction and atomic force microscope. For investigating the optical properties of excitonic transition of ZnO, we carried out photoluminescence experiments as a function of temperature. The free exciton, bound exciton emission and their phonon replicas were investigated as a function of temperature from 10 to 300 K, and the intensity of excitonic PL peak emission from the sample A is found to be higher than that of sample B. From the results, we found that sample A has better crystal structure quality and optical properties as compared to sample B. The number of oxygen vacancies may be decreased in sample A, resulting in an enhancement of the crystal quality and a higher intensity of excitonic emission band as compared to sample B.

Temperature-dependent photoluminescence properties of amorphous and crystalline V2O5 films (비정질과 결정질 V2O5 박막의 온도에 따른 발광특성)

  • Kang, Manil;Chu, Minwoo;Kim, Sok Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.202-206
    • /
    • 2014
  • In order to investigate the photoluminescence (PL) properties of $V_2O_5$ films, amorphous and crystalline films were prepared by using RF sputtering system, and the PL spectra of the films were measured at the temperatures ranging from 300 K to 10 K. In the amorphous $V_2O_5$ film grown at room temperature, a PL peak centered at ~505 nm was only observed, and in the crystalline $V_2O_5$ film, two peaks centered at ~505 nm and ~695 nm, which is known to correspond to oxygen defects, were revealed. The position of PL peak centered at 505 nm for both the amorphous and crystalline $V_2O_5$ films showed a strong dependence on temperature, and the positions were 2.45 eV at 300 K and 2.35 eV at 10 K, respectively. The PL at 505 nm was due to the band energy transition in $V_2O_5$, and also, the reduction of the peak position energy with decreasing temperature was caused by a decrement of the lattice dilatation effect with reducing electron-phonon interaction.

Electron Mobility Model in Strained Si Inversion Layer (응력변형을 겪는 Si 반전층에서 전자 이동도 모델)

  • Park Il-Soo;Won Taeyoung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.9-16
    • /
    • 2005
  • The mobility in strained Si inversion layer on $Si_{1-x}Ge_x$ is calculated considering a quantum effect(subband energy and wavefunction) in inversion layer and relaxation time approximation. The quantum effect in inversion layer is obtained by using self-consistent calculation of $Schr\ddot{o}dinger$ and Poisson equations. For the relaxation time, intravalley and intervalley scatterings are considered. The result shows that the reason for the enhancement in mobility as Ge mole fraction increases is that the electron mobility in 2-폴드 valleys is about 3 times higher than that of 4-폴드 valleys and most electrons are located in 2-폴드 valleys as Ge mole fraction increases. Meanwhile, for the phonon-limited mobility the fitting to experimental data, Coulomb and surface roughness mobilities are included in total mobility, Deformation potentials are selected for the calculated effective field, temperature, and Ge mole fraction dependent mobilities to be fitted to experimental data, and then upgraded data can be obtained by considering nonparabolicity in Si band structure.

Properties for the $CdIn_2Te_4$ Single Crystal

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.179-182
    • /
    • 2004
  • The $p-CdIn_2Te_4$ single crystal was grown in the three-stage vertical electric furnace by using Bridgman method. The quality of the grown crystal has been investigated by the x-ray diffraction and the photoluminescence measurements. From the Photoluminescence spectra of the as-grown $CdIn_2Te_4$ crystal and the various heat-treated crystals, the $(D^{o},X)$ emission was found to be the dominant intensity in the photoluminescence spectrum of the $CdIn_2Te_4:Cd$, while the $(A^{o},X)$ emission completely disappeared in the $CdIn_2Te_4:Cd$. However, the $(A^{o},X)$ emission in the photoluminescence spectrum of the $CdIn_2Te_4:Te$ was the dominant intensity like an as-grown $p-CdIn_2Te_4$ crystal. These results indicated that the $(D^{o},X)$ is associated with $V_{Te}$ acted as donor and that the $(A^{o},X)$ emission is related to $V_{Cd}$ acted as acceptor, respectively. The $p-CdIn_2Te_4$ crystal was found to be obviously converted into the n-type after annealing in the Cd atmosphere. The origin of $(D^{o},\;A^{o})$ emission and its TO Phonon replicas is related to the interaction between donors such as $V_{Te}$ or $Cd_{int}$, and accepters such as $V_{Cd}$ or $Te_{int}$. Also, the In in the $CdIn_2Te_4$ was confirmed not to form the native defects because it existed in the stable form of bonds.

  • PDF