• Title/Summary/Keyword: Phoneme-based retrieval

Search Result 5, Processing Time 0.02 seconds

Retrieval of Player Event in Golf Videos Using Spoken Content Analysis (음성정보 내용분석을 통한 골프 동영상에서의 선수별 이벤트 구간 검색)

  • Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.7
    • /
    • pp.674-679
    • /
    • 2009
  • This paper proposes a method of player event retrieval using combination of two functions: detection of player name in speech information and detection of sound event from audio information in golf videos. The system consists of indexing module and retrieval module. At the indexing time audio segmentation and noise reduction are applied to audio stream demultiplexed from the golf videos. The noise-reduced speech is then fed into speech recognizer, which outputs spoken descriptors. The player name and sound event are indexed by the spoken descriptors. At search time, text query is converted into phoneme sequences. The lists of each query term are retrieved through a description matcher to identify full and partial phrase hits. For the retrieval of the player name, this paper compares the results of word-based, phoneme-based, and hybrid approach.

A Query-by-Speech Scheme for Photo Albuming (음성 질의 기반 디지털 사진 검색 기법)

  • Kim Tae-Sung;Suh Young-Joo;Lee Yong-Ju;Kim Hoi-Rin
    • MALSORI
    • /
    • no.57
    • /
    • pp.99-112
    • /
    • 2006
  • In this paper, we introduce two retrieval methods for photos with speech documents. We compare the pattern of speech query with those of speech documents recorded in digital cameras, and measure the similarities, and retrieve photos corresponding to the speech documents which have high similarity scores. As the first approach, a phoneme recognition scheme is used as the pre-processor for the pattern matching, and in the second one, the vector quantization (VQ) and the dynamic time warping (DTW) are applied to match the speech query with the documents in signal domain itself. Experimental results show that the performance of the first approach is highly dependent on that of phoneme recognition while the processing time is short. The second method provides a great improvement of performance. While the processing time is longer than that of the first method due to DTW, but we can reduce it by taking approximated methods.

  • PDF

N-gram Based Robust Spoken Document Retrievals for Phoneme Recognition Errors (음소인식 오류에 강인한 N-gram 기반 음성 문서 검색)

  • Lee, Su-Jang;Park, Kyung-Mi;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.149-166
    • /
    • 2008
  • In spoken document retrievals (SDR), subword (typically phonemes) indexing term is used to avoid the out-of-vocabulary (OOV) problem. It makes the indexing and retrieval process independent from any vocabulary. It also requires a small corpus to train the acoustic model. However, subword indexing term approach has a major drawback. It shows higher word error rates than the large vocabulary continuous speech recognition (LVCSR) system. In this paper, we propose an probabilistic slot detection and n-gram based string matching method for phone based spoken document retrievals to overcome high error rates of phone recognizer. Experimental results have shown 9.25% relative improvement in the mean average precision (mAP) with 1.7 times speed up in comparison with the baseline system.

  • PDF

An English-to-Korean Transliteration Model based on Grapheme and Phoneme (자소 및 음소 정보를 이용한 영어-한국어 음차표기 모델)

  • Oh Jong-Hoon;Choi Key-Sun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.312-326
    • /
    • 2005
  • There has been increasing interest in English-to-Korean transliteration recently. Previous ,works are related to a direct method like $\rightarrow$Korean graphemes> and a pivot method like $\rightarrow$English phoneme$\rightarrow$Korean graphemes>. Though most of the previous works focus on the direct method, transliteration, however, is a phonetic process rather than an orthographic one. In this point of view, we present an English-Korean transliteration model using grapheme and phoneme information. Unlike the previous works, our method uses phonetic information such as phonemes and their context. Moreover, we also use graphemes corresponding to phonemes. Our method shows about $60\%$ word accuracy.

Automatic Inter-Phoneme Similarity Calculation Method Using PAM Matrix Model (PAM 행렬 모델을 이용한 음소 간 유사도 자동 계산 기법)

  • Kim, Sung-Hwan;Cho, Hwan-Gue
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.34-43
    • /
    • 2012
  • Determining the similarity between two strings can be applied various area such as information retrieval, spell checker and spam filtering. Similarity calculation between Korean strings based on dynamic programming methods firstly requires a definition of the similarity between phonemes. However, existing methods have a limitation that they use manually set similarity scores. In this paper, we propose a method to automatically calculate inter-phoneme similarity from a given set of variant words using a PAM-like probabilistic model. Our proposed method first finds the pairs of similar words from a given word set, and derives derivation rules from text alignment results among the similar word pairs. Then, similarity scores are calculated from the frequencies of variations between different phonemes. As an experimental result, we show an improvement of 10.1%~14.1% and 8.1%~11.8% in terms of sensitivity compared with the simple match-mismatch scoring scheme and the manually set inter-phoneme similarity scheme, respectively, with a specificity of 77.2%~80.4%.