• Title/Summary/Keyword: Phenylquinoline

Search Result 6, Processing Time 0.021 seconds

Synthesis of Oligoquinoline Dendronized Fullerenes for Potential Use in Organic Photovoltaic Devices

  • Kwon, Tae-Woo;Jenekhe, Samson A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2703-2706
    • /
    • 2012
  • New C60 fullerenes derivatives [G1]-C60 (1) and [G2]-C60 (2) comprising of phenylenevinylene bridges and phenylquinoline peripheral surface groups were synthesized by 1,3-dipolar cycloaddition reaction of fullerene C60 with azomethine ylide in situ generated from [Gx]-CHO dendrons (x = 1 and 2) and sarcosine.

Color Tuning of OLEDs Using the Ir Complexes of White Emission by Adjusting the Band Gap of Host Materials

  • Seo, Ji-Hyun;Kim, In-June;Seo, Ji-Hoon;Hyung, Gun-Woo;Kim, Young-Sik;Kim, Young-Kwan
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.18-21
    • /
    • 2008
  • We report on white organic light-emitting diodes (WOLEDs) based on single white dopants, $Ir(pq)_2$($F_2$-ppy) and $Ir(F_2-ppy)_2$(pq), where $F_2$-ppy and pq are 2-(2,4-difluorophenyl) pyridine and 2-phenylquinoline, respectively. The similar phosphorescent lifetime of two ligands lead to luminescence emission in two ligands simultaneously. However, the emission color of the devices was reddish, because the energy was not transferred efficiently from the 4,4,N,N'-dicarbazolebiphenyl (CBP) to the $F_2$-ppy ligand, due to the small band gap of the CBP. Accordingly, we used 1,4-phenylenesis(triphenylsilane) (UGH2) with a large band gap, instead of CBP as the host material. As a result, it was possible to adjust the emission color by the host material. The luminous efficiency of the device with $Ir(F_2-ppy)_2$(pq) doped in UGH2 was about 11 cd/A at 0.06 cd/$m^2$.

Two-color-mixed white organic light-emitting diodes with a high color temperature

  • Park, Jung-Soo;Yu, Jae-Hyung;Jeon, Woo-Sik;Son, Young-Hoon;Kulshreshtha, Chandramouli;Kwon, Jang-Hyuk
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.51-55
    • /
    • 2011
  • Efficient two-color-mixed white organic light-emitting diodes are presented herein by employing a sky-blue phosphorescent dopant of iridium(III)bis[4,6-(difluorophenyl)-pyridinato-N,$C^{2'}$]picolinate (FIrpic) and an orange phosphorescent dopant of bis(2-phenylquinoline)(acetylacetonate)iridium(III) ($Ir(phq)_2$acac) on the emissive layer. Very stable color variation under ${\Delta}$0.02 until a 5000 cd/$m^2$ brightness value was realized by efficient carrier control in a multi-stacked emitting layer of blue/red/blue colors. Maximum current and power efficiencies of 23.8 cd/A and 22.9 lm/W in the forward direction were obtained. With balanced emission from the two emitters, the white-light emission of high correlated color temperature of 7308K and the Commission Internationale de I'Eclairage coordinates of (0.30, 0.33) were achieved.

2-Wavelength Organic Light-Emitting Diodes Using Bebq2 Selectively Doped with (pq)2Ir(acac) (Bebq2에 (pq)2Ir(acac)가 선택 도핑된 2-파장 유기발광다이오드)

  • Kim, Min-Young;Ji, Hyun-Jin;Jang, Ji-Geun
    • Korean Journal of Materials Research
    • /
    • v.21 no.4
    • /
    • pp.212-215
    • /
    • 2011
  • New organic light-emitting diodes with structure of indium-tin-oxide[ITO]/N,N'-diphenyl-N, N'-bis-[4-(phenyl-m-tolvlamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD]/1,1-bis-(di-4-poly-aminophenyl) cyclohexane[TAPC]/bis(10-hydroxy-benzo(h)quinolinato)beryllium[Bebq2]/Bebq2:iridium(III)bis(2-phenylquinoline-N,C2')acetylacetonate[(pq)2Ir(acac)]/ET-137[electron transport material from SFC Co]/LiF/Al using the selective doping of 5%-(pq)2Ir(acac) in a single Bebq2 host in the two wavelength (green, orange) emitter formation were proposed and characterized. In the experiments, with a 300${\AA}$-thick undoped emitter of Bebq2, two kinds of devices with the doped emitter thicknesses of 20${\AA}$ and 40${\AA}$ in the Bebq2:(pq)2Ir(acac) were fabricated. The device with a 20${\AA}$-thick doped emitter is referred to as "D-1" and the device with a 4${\AA}$-thick doped emitter is referred to as "D-2". Under an applied voltage of 9V, the luminance of D-1 and D-2 were 7780 $cd/m^2$ and 6620 $cd/m^2$, respectively. The electroluminescent spectrum of each fabricated device showed peak emissions at the same two wavelengths: 508 nm and 596 nm. However, the relative intensity of 596 nm to 508 nm at those wavelengths was higher in the D-2 than in the D-1. The D-1 and D-2 devices showed maximum current efficiencies of 5.2 cd/A and 6.0 cd/A, and color coordinates of (0.31, 0.50) and (0.37, 0.48) on the Commission Internationale de I'Eclairage[CIE] chart, respectively.

Fabrication and Characterization of Red OLED on the Plastic Substrate (플라스틱 기판상에 적색 OLED 제작과 특성 연구)

  • Jeong, Jin-Cheol;Kim, Hyeong-Seok;Kim, Won-Ki;Jang, Ji-Geun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.15-19
    • /
    • 2009
  • A high efficient organic red light emitting device with structure of DNTPD/TAPC/$Bebq_2$ :[$(pq)_2Ir(acac)$, SFC-411]/SFC-137 was fabricated on the plastic substrate, which can be applied in the fields of flexible display and illumination. In the device structure, N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolylamino)-phenyl]-biphenyl-4,4'-diamine[DNTPD] as a hole injection layer and 1,1-bis-(di-4-tolylaminophenyl) cyclohexane [TAPC] as a hole transport were used. Bis(10-hydroxybenzo[h]quinolinato) beryllium complex [$Bebq_2$] was used as a light emitting host material. The host material, $Bebq_2$ was doubly doped with volume ratio of 7% iridium(III)bis-(2-phenylquinoline)acetylacetonate[$(pq)_2$Ir(acac)] and 3% SFC-411[red phosphor dye coded by the proprietary company]. And then, SFC-137 was used as an electron transport layer. The luminous intensity and current efficiency of the fabricated device were $22,780\;cd/m^2$ at 9V and 17.3 cd/A under $10,000\;cd/m^2$, respectively. The maximum current efficiency of the device was 22.4cd/A under $580\;cd/m^2$.

  • PDF

Orange Phosphorescent Organic Light-emitting Diodes Using a Spirobenzofluorene-type Phospine Oxides as Host Materials

  • Jeon, Young-Min;Lee, In-Ho;Lee, Chil-Won;Lee, Jun-Yeob;Gong, Myoung-Seon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2955-2960
    • /
    • 2010
  • Spiro-type orange phosphorescent host materials, 9-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-1P) and 5-diphenylphosphine oxide-spiro[fluorene-7,9'-benzofluorene] (OPH-2P) were successfully prepared by a lithiation reaction followed by a phosphination reaction with diphenylphosphinic chloride. The EL characteristics of OPH-1P and OPH-2P as orange host materials doped with iridium(III) bis(2-phenylquinoline)acetylacetonate ($Ir(pq)_2acac$) were evaluated. The electroluminescence spectra of the ITO (150 nm)/DNTPD (60 nm)/NPB (30 nm)/OPH-1P or OPH-2P: $Ir(pq)_2acac$ (30 nm)/BCP (5 nm)/$Alq_3$ (20 nm)/LiF (1 nm)/Al (200 nm) devices show a narrow emission band with a full width at half maximum of 75 nm and $\lambda_{max}$ = 596 nm. The device obtained from OPH-1P doped with 3% $Ir(pq)_2acac$ showed an orange color purity of (0.580, 0.385) and an efficiency of (14 cd/A at 7.0 V). The ability of the OPH-P series to combine a high triple energy with a low operating voltage is attributed to the inductive effect of the P=O moieties and subsequent energy lowering of the LUMO, resulting in the enhancement of both the electron injection and transport in the device. The overall result is a device with an EQE > 8% at high brightness, but operating voltage of less than 6.4 V, as compared to the literature voltages of ~10 V.