• Title/Summary/Keyword: Phenylethanolamine N-methyltransferase

Search Result 9, Processing Time 0.025 seconds

Phenylethanolamine N-methyltransferase: Regulation of the Enzyme in Adrenal Gland, Brain Stem and Hypothalamus (Phenylethanolamine N-methyltransferase: 부신, 뇌간, 시상하부 효소의 조절)

  • Chun, Yang-Sook;Suh, Yoo-Hun
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.159-168
    • /
    • 1996
  • To determine the regulatory mechanism of phenylethanolamine N-methyltransferase (PNMT) in the adrenal gland and in central nervous system, we observed the change of enzyme activity and mRNA level of PNMT in the adrenal gland, the brain stem, and hypothalamus of rats, which were injected with two neuroleptic agents(reserpine and haloperidol ). Reserpine depleting catecholamines in presynaptic vesicle increased PNMT activities in the adrenal gland and the brain stem to 150% of the control in time-dependent manner, but not in the hypothalamus. Haloperidol blocking dopamine receptor decreased PNMT activities in the adrenal gland and the hypothalamus, but not in the brain stem. Thus, the results indicate that catecholamines inhibit synthesis of epinephrine in the brain stem and the adrenal gland, and that dopamine stimulates synthesis of epinephrine in the hypothalamus and the adrenal gland. In addition, since the change of mRNA levels were nearly in accordance with the change of activities, the transcriptional regulation of PNMT is considered the mechanism of the regulation of epinephrine neuron.

  • PDF

REGULATION OF RAT ADRENAL MEDULLARY PHENYLETHANOL AMINE N-METHYLTRANSFERASE

  • Yoo, Young-Sook;Wong, Dona L.
    • Toxicological Research
    • /
    • v.6 no.1
    • /
    • pp.89-97
    • /
    • 1990
  • Neural regulation of phenylethanolamine N-meth-yltransferase (PNMT) was studied with reserpine as a neuronal agent in rat adrenal medulla. The enzyme activity assay and northern blot analysis were performed to determine whether the induction of PNMT activity after reserpine treatment was associated with elevation of mRNA coding for PNMT. The i.p. administration of reserpine (2.5 mg/kg) on alternate days fot 4 injections to rats brought about 30% increase of adrenal medullary PNMT activity and approximately 60% stimulation of the PNMT mRNA level in rat adrenal gland. A dose of 10 mg/kg of reserpine was chosen to perform optimum induction of PNMT activity in the rat adrenal gland based on the results of dose response curve of reserpine. Time course reserpine (10 mg/kg) effects on the rat adrenal medullary PNMT were as follows: 1. Peripheral PNMT activity reached maximum level after 7 days of drug treatment on alternate days. 2. Trans-synaptic stimulation by reserpine increased pretranslational activity of rat adrenal PNMT, but not translational activity. 3. Immunotitration of PNMT molecule after reserpine treatment indicated that reserpine produced an enzyme with greater antibody affinity than endogenous molecule in the rat adrenal gland.

  • PDF

Flavonoids can be Potent Inhibitors of Human Phenylethanolamine N-Methyltransferase (hPNMT)

  • Lee, Jee-Young;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1835-1838
    • /
    • 2009
  • Inhibition of human phenylethanolamine N-methyltransferase (hPNMT) has been proposed as a method for the treatment of several mental processes which related on adrenaline metabolism. We performed in silico screening to identify flavonoid inhibitors of hPNMT using automated docking method and selected 9 inhibitor candidates based on ligand score (LigScore) and binding free energy (${\Delta}G_{bind}$) estimation. Among 9 flavonoid candidates, 7 flavonoids belong to flavones while the rest of them belong to flavanone. All candidates have common chemical features; two hydrogen bond interactions with side chain of Lys75 and backbone carbonyl oxygen of Asn39, and two hydrophobic interactions. One hydrophobic site is formed by Val53, Leu262, and Met258 and the other is made up of Phe182, Ala186, Tyr222, and Val269. This study can be helpful to understand the structural features for inhibition of PNMT and showed flavonoids as promising inhibitor candidates for hPNMT.

Molecular Cloning of Human Genomic DNA for Epinephrine Synthesizing Enzyme, Phenylethanolamine N-Methyltransferase (Epinephrine 합성효소인 phenylethanolamine N-methyltransferase의 인간 genomic DNA의 유전자 크로닝)

  • Suh, Yoo-Hun;Huh, Sung-Oh;Chun, Yang-Sook;Kim, Hun-Sik;Lim, Jung-Kyoo;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 1988
  • To obtain information about the structure of the human phenylethanolamin N-methyltransferase (PNMT) and to further define the extent of the evolutionary relationships among PNMT molecules of several spesies, a full length cDNA clone for bovine adrenal PNMT was used to screen a charon 4A genomic library. One phage was isolated and identified, which included the entire PNMT gene. The length of inserted genomic DNA was 13.1-Kilobase (Kb) containing two internal EcoRI sites. Construction of a restriction map and subsequent Southern and dot blot analysis with 5'-and3'-specific cDNA probes allowed the identification of exon-containing fragments. This is the first report of the cloning of gene for human epinephrine synthesizing enzyme.

  • PDF

Dopaminergic neurons of the substantia nigra and ventral tegmentum in the stripped field mouse(apodemus agrarius coreae) (야생등줄쥐 흑색질 및 배쪽피개의 dopamine성 신경세포)

  • Jeong, Young-gil;Kim, Kil-soo;Lee, Chul-ho;Yoon, Won-kee;Hyun, Byung-hwa;Oh, Yang-seok;Won, Moo-ho;Kim, Moo-kang
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.489-497
    • /
    • 1997
  • The distributions characteristics of neurons displaying immunoreactivity to the catecholamine synthetic enzymes, tyrosine hydroxylase(TH), dopamine-${\beta}$-hydroxylase(DBH), and phenylethanolamine-N-methyltransferase(PNMT) were examined in the adjacent sections of the substantia nigra & ventral tegmentum of the Striped Field Mouse(Apodemus agrarius coreae). None of these cell groups displayed either DBH or PNMT immunoreactivity. Many TH-immunoreactive neurons were present in the substantia nigra & ventral tegmentum. The major dopaminergic cell(TH-positive, DBH- & PNMT-negative) group in the midbrain was present in the pars compacta of substantia nigra and adjacent ventral tegmentum. And smaller dopaminergic cell groups Were found in the pars reticulata of the substantia nigra and central liner nucleus.

  • PDF

Tyrosine hydroxylase immunoreactive neurons of the olfactory bulb in the stripped field mouse(apodemus agrarius coreae) (야생등줄쥐 후각망울의 Tyrosine hydroxylase 면역반응신경세포)

  • Jeong, Young-gil;Lee, Nam-seob;Kim, Kil-soo;Lee, Chul-ho;Hyun, Byung-hwa;Won, Moo-ho;Kim, Moo-kang
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.3
    • /
    • pp.499-508
    • /
    • 1997
  • The distributions and morphological characteristics of neurons displaying immunoreactivity to the catecholamine synthetic enzymes, tyrosine hydroxylase(TH), dopamine-${\beta}$-hydroxylase(DBH), and phenylethanolamine-N-methyltransferase (PNMT) were examined in the adjacent sections of the olfactory bulb of the Striped Field Mouse(Apodemus agrarius coreae). None of these cell groups displayed either DBH or PNMT immunoreactivity. Many TH-immunoreactive neurons were present in the olfactory bulb. The vast majority of such cells occurred in the glomerular layer as periglomerular cells surrounding the glomeruli. Numerous addtional cells were present in the external plexiform layer, and scattered in the mitral cell layer and internal plexiform layer. Also TH-immunoreactive neurons were found in the glomerular layer and granular layer of the accessory olfactory bulb.

  • PDF

THe Effect of Chronic Ehronic Treatment and Cold stress on Catecholaminergic Enzyme activity and mRNA in Rat Brain and Adrenals

  • Lee, Yong-Kyu;Park, Dong-H
    • Archives of Pharmacal Research
    • /
    • v.19 no.5
    • /
    • pp.374-380
    • /
    • 1996
  • Sprague-Dawley male rats (150 g) were chronically treated with 5 v/v % ethanol admixed with nutritionally complete liquid diet and fed ad libitum for 3 weeks. One half of each group was exposed to cold stress at 4 ^{\circ}C either for 24 h (for determination of mRNA by in situ hybridization) or for 48 h (for determination of enzyme activity). Chronic ethanol treatment (ethanol) did not affect tyrosine hydroxylase(TH) mRNA level in locus coeruleus(LC) of brain and adrenal medulla(AM) compared to controls. Cold stress showed strong increase of TH mRNA level in LC and AM compared to controls. Pretreated ethanol reduced the increased TH mRNA level by cold stress in LC and AM. Ethanol did not affect TH activity in LC and adenal glands(adrenals). Cold stress increased TH activity in LC but not in adrenals. Pretreated ethanol did not reduce the increased TH activity by cold stress in LC but this result was not shown in adrenals. Phenylethanolamine-N-methyltransferase(PNMT) activity in $C_{1}$$C_{2}$ and adrenals increased only in ethanol treated group. THese results suggest that ethanol does not affect TH mRNA level and activity in LC and adrenals, but increases PNMT activity in $C_{1}$$C_{2}$ and adrenals in normal rat. It is also suggested that pretreated ethanol reduces the magnitude of cold stress response, that is induction of TH mRNA in LC and AM, and does not reduce the protein activation of TH that is also cold stress response in LC.

  • PDF

흰쥐의 뇌와 부신에서 카테콜아민 생합성 효소들의 유전자 발현에 미치는 Estrogen의 효과

  • 유경신;이성호
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.114-114
    • /
    • 2002
  • 포유동물에서 뇌와 부신에서 합성.분비되는 카테콜아민(Catecholamine, CA)계 신경전달물질인 dopamine(DA), norepinephrine(NE), epinephrine(E)은 체내 각종 생리현상의 조절에 필수적이며, 생식과 관련지어서는 시상하부-뇌하수체 간 GnRH-gonadotropin 호르몬 축의 활성을 조절하는 기능 외에도 번식과 관련된 여러 행동양식을 조절함이 잘 알려져 있다. 본 연구는 CA 생합성 효소들인 tyrosine hydroxylase(TH), dopamine beta-hydroxylase(DBH), phenylethanolamine-N-methyltransferase(PNMT)의 유전자 발현에 미치는 sex steroid의 영향을 조사하였다. 성숙한 암컷 횐쥐(SD strain)의 난소를 제거하고 1주 경과 후 vehicle(sesame oil; OVX+Oil 실험군) 또는 estradiol 17$\beta$(235ug/m1; OVX+E$_2$실험군)이 든 silastic capsule(길이 14mm; 내경 1.55mm; 외경 3.125mm)을 48 시간 동안 처리한 뒤 희생시켰다. 적출된 조직으로부터 RNA를 추출한 후 semi-quantitative RT-PCR을 시행하였다. (i) TH의 발현 정도는 OVX+Oil 군에서는 시상하부) substantia nigra(SNc)) 부신 순으로, OVX+E$_2$군에서는 SN글 부신) 시상하부 순으로 나타났다. TH 발현에 미치는 estradiol의 효과로 SNc과 부신에서는 유의한 증가를 보인데 비해 시상하부에서는 유의한 감소를 관찰하였다. (ii) DBH 발현 정도는 OVX+Oil군에서는 SNc> 부신> 시상 하부 순으로, OVX+E$_2$군에서는 부신> SNc> 시상하부 순이었다. DBH 발현에 미치는 estradiol의 효과로 SNc에서는 유의한 감소, 부신에서는 유의한 증가, 그리고 시상하부에서는 통계적 유의성은 없으나 감소하는 경향을 보였다. (iii) PNMT의 발현의 경우 SNc와 시상하부에서는 기보고된 바와 같이 alternative splicing에 의해 110bp 차이의 크고 작은 두 형태의 cDNA(PNMTI & PNMTs)가 증폭되었으나 부신에서는 작은 cDNA 만이 관찰되었다. PNMTs의 발현 정도는 OVX+Oil군과 OVX+E$_2$군에서 공히 부신> 시상하부> SNc 순이었고, PNMTI의 발현은 SNc가 시상하부 보다 다소 높은 경향이었으나 유의성은 없었다. PNMTs 발현에 미치는 estradiol의 효과로 SNc에서는 유의한 감소, 부신에서는 유의한 증가, 그리고 시상하부에서는 통계적 유의성은 없으나 증가하는 경향을 보였다. 본 연구에서는 CA 생합성 효소들의 유전자 발현의 조절에 미치는 estrogen 의 영향이 세포 기원이 neural crest cell인 부신 수질은 물론 뇌의 상이한 지역간에서도 조직특이적임을 관찰하였다. 이러한 결과는 각 조직에서의 estrogen 수용체 유형의 차이 혹은 작용 모드와 각 효소 유전자 발현 사이에 중요한 상관관계가 있음을 시사한다.

  • PDF

Alteration of Biosynthesis and Secretion of Adrenal Catecholamines in Cycling Rat (발정주기 중 흰쥐 부신에서의 카테콜아민 합성과 분비 변화)

  • 이성호
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.105-110
    • /
    • 2002
  • Numerous hormones are involved in the regulation of reproduction. Among them, estrogen and progesterone are the most important ovarian steroid hormones regulating female fertility. On the other hand, diverse stressors impede female receptivity and fertility. Since norepinephrine(NE) and epinephrine(E) are released from the adrenal during stress, it might play a role in stress-induced disruptions of fEmale reproductive parameters. The present study was performed to analyze the changes in adrenal catecholaminergic activities in cycling rats. The tissue content and secretion level of catecholamines were determined by high performance liquid chromatography coupled with electrochemical detector(HPLC-ECD). Adrenomedullary content of norepinephrine(NE) was increased on proestrus stage (59.47 $\pm$ 6.86 ug/gland), peaked on diestrus I stage(65.22 $\pm$ 5.99 ug/gland), and was nadir on diestrus II stage(41.63 $\pm$ 1.33 ug/gland). The highest E content was observed on proestrus stage(361.86 $\pm$ 15.58 ug/gland) while the lowest level was on diestrus II stage(285.58 $\pm$ 12.25 ug/gland). In addition to these observations, a significant reduction of the NE : E ratio was observed (1 : 4.81 on diestrus I vs 1 : 6.13~7.02 on other stages). In vitro secretion of adrenal NE and E was increased on proestrus stage, peaked on estrus stage, and decreased on diestrus II stage. Interestingly, the NE : E ratio in conditioned media was significantly increased on estrus stage (1 : 3.32 vs 1 : 2.34~2.65 on other stages. The biosynthesis of NE and E is mediated by tyrosine hydroxylase(TH) and phenylethanolamine-N-methyltransferase(PNMT) which acts conversion of tyrosine into DOPA and NE into E, respectively. These finding demonstrated that sex steroids, during setrous cycle, seem to be able to modify the adrenal catecholamines biosynthesis and secretion with stage-specific manner by modulation of the enzyme activities.

  • PDF