• Title/Summary/Keyword: Phenotypic trait

Search Result 197, Processing Time 0.025 seconds

Estimation of Genetic Parameters for Reproductive Traits between First and Later Parities in Pig

  • Oh, S.H.;Lee, D.H.;See, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The objective of this study was to estimate genetic parameters between first and later parities as different traits in reproductive traits of pigs using multiple trait animal model procedures. Data related to reproductive traits from a total of 2,371 individuals maintained at a farm were taken from the pedigree file. Sires and dams were consisted of Duroc, Landrace, and Yorkshire breeds, respectively. The first and later parity records were considered as different traits. Traits included in analyses were total pigs born (TB1), number of pigs born alive (NBA1), number of pigs weaned (NW1), and litter weaning weight (LWT1) in the first parity, and total pigs born (TB2), number of pigs born alive (NBA2), number of pigs weaned (NW2), litter weaning weight (LWT2) and interval between farrowing events (FTF) in later parities. Heritability estimates of TB1, NBA1, NW1 and LWT1 in the first parity were 0.27, 0.25, 0.16 and 0.20, respectively. For TB2, NBA2, NW2, LWT2 and FTF in later parities, heritabilities were estimated as 0.15, 0.15, 0.08, 0.11 and 0.07, respectively. Genetic correlations between sow reproductive traits in the first parity and in the second and later parity were estimated to be 0.89, 0.77, 0.58 and 0.66, respectively, between TB1 and TB2, NBA1 and NBA2, NW1 and NW2, and LWT1 and LWT2. While phenotypic correlations between TB1 and TB2, NBA1 and NBA2, NW1 and NW2, and LWT1 and LWT2 were estimated as 0.18, 0.15, 0.06 and 0.10, respectively. Genetic correlations between reproductive traits of first and later parities were not high indicating that reproductive traits for sows should be analyzed while considering the parities as different traits.

Genetic Parameters for Linear Type Traits and Milk, Fat, and Protein Production in Holstein Cows in Brazil

  • Campos, Rafael Viegas;Cobuci, Jaime Araujo;Kern, Elisandra Lurdes;Costa, Claudio Napolis;McManus, Concepta Margaret
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.476-484
    • /
    • 2015
  • The objective of this study was to estimate genetic and phenotypic parameters for linear type traits, as well as milk yield (MY), fat yield (FY) and protein yield (PY) in 18,831 Holstein cows reared in 495 herds in Brazil. Restricted maximum likelihood with a bivariate model was used for estimation genetic parameters, including fixed effects of herd-year of classification, period of classification, classifier and stage of lactation for linear type traits and herd-year of calving, season of calving and lactation order effects for production traits. The age of cow at calving was fitted as a covariate (with linear and quadratic terms), common to both models. Heritability estimates varied from 0.09 to 0.38 for linear type traits and from 0.17 to 0.24 for production traits, indicating sufficient genetic variability to achieve genetic gain through selection. In general, estimates of genetic correlations between type and production traits were low, except for udder texture and angularity that showed positive genetic correlations (>0.29) with MY, FY, and PY. Udder depth had the highest negative genetic correlation (-0.30) with production traits. Selection for final score, commonly used by farmers as a practical selection tool to improve type traits, does not lead to significant improvements in production traits, thus the use of selection indices that consider both sets of traits (production and type) seems to be the most adequate to carry out genetic selection of animals in the Brazilian herd.

Association of the Single Nucleotide Polymorphisms in RUNX1, DYRK1A, and KCNJ15 with Blood Related Traits in Pigs

  • Lee, Jae-Bong;Yoo, Chae-Kyoung;Park, Hee-Bok;Cho, In-Cheol;Lim, Hyun-Tae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.12
    • /
    • pp.1675-1681
    • /
    • 2016
  • The aim of this study was to detect positional candidate genes located within the support interval (SI) regions based on the results of red blood cell, mean corpuscular volume (MCV), and mean corpuscular hemoglobin quantitative trait locus (QTL) in Sus scrofa chromosome 13, and to verify the correlation between specific single-nucleotide polymorphisms (SNPs) located in the exonic region of the positional candidate gene and the three genetic traits. The flanking markers of the three QTL SI regions are SW38 and S0215. Within the QTL SI regions, 44 genes were located, and runt-related transcription factor 1, dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A (DYRK1A), and potassium inwardly-rectifying channel, subfamily J, member 15 KCNJ15-which are reported to be related to the hematological traits and clinical features of Down syndrome-were selected as positional candidate genes. The ten SNPs located in the exonic region of the three genes were detected by next generation sequencing. A total of 1,232 pigs of an $F_2$ resource population between Landrace and Korean native pigs were genotyped. To investigate the effects of the three genes on each genotype, a mixed-effect model which is the considering family structure model was used to evaluate the associations between the SNPs and three genetic traits in the $F_2$ intercross population. Among them, the MCV level was highly significant (nominal $p=9.8{\times}10^{-9}$) in association with the DYRK1A-SNP1 (c.2989 G$F_2$ intercross, our approach has limited power to distinguish one particular positional candidate gene from a QTL region.

Association Between MSTN Gene Polymorphism and Growth Traits in Landrace Pigs (돼지 Landrace 품종에서 Myostatin 유전자의 유전적 다형성과 성장형질과의 연관성)

  • Cho, I.C.;Choi, Y.L.;Ko, M.S.;Kim, H.S.;Lee, J.G.;Jeon, J.T.;Han, Sang-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.159-166
    • /
    • 2005
  • Porcine myostatin(MS1N) gene plays a key role in the differentiation of myoblast and muscle development. Genetic polymorphism was screened by single stranded conformation polymorphism(SSCP) analysis and subsequent DNA sequencing detected a nucleotide substitution(C2150T) in exon 3 of MSIN gene. Phenotypic association of the polymorphism was tested in a Landrace population and positive effects of the allele T for lean growth traits were found in the population. Even though it is not significant, the pigs have IT and TC genotypes were heavier for the body weight at birth and at twenty weeks of age than those containing genotype. Cc. However, the allele T was significantly associated with higher eye muscle area(P < 0.05). As a result of this study, we suggested that the allele T in exon 3 of MSTN gene comes a significant effect for increasing the eye muscle area without decreasing backfat thickness. This polymorphism did not change the amino acid but Taq I -RFLP matched to SSCP band patterns in exon 3 of MSTN gene, which will be an useful molecular marker for breeding of Landrace pigs.

Relationships between Dapsone Metabolic Activity and Polymorphism of Arylamine N-acetyltransferase 2 in the F2 Hybrid Rats (잡종 2세대(Fischer 계: Wistar-Kyoto 계) 흰쥐에서 Arylamine N-acetyltransferase 2의 다형성과 Dapsone의 대사능과의 연관성에 대한 연구)

  • 신인철;강주섭;고현철;이창호;안동춘;백두진;심성한;조율희
    • Biomolecules & Therapeutics
    • /
    • v.10 no.3
    • /
    • pp.193-199
    • /
    • 2002
  • The arylamine N-acetyltransferases (NATs) are a family of enzymes that N-acetylate mylhydrazines and arylamines through transfer of an acetyl group from acetyl coenzyme A. This activity was found to vary among individuals as a Mendalian trait and the basis of the genetic differences in human NAT activity is one of the best of the genetic studied examples of pharmacogenetic variation. The classical N-acetylation polymorphism is regulated at the NAT2 locus, which segregates individuals into rapid, intermediate, and slow acetylator phenotypes. In this study, the relationship between NAT2 activity phenotype using HPLC:UV assay for the determination of dapsone and monoacetyldapsone in plasma and NAT2 genotype by PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) was investigated in the F2 hybrid (Fischer 344 vs Wistar-Kyoto) rats. Three Common mutant alleles at the NAT2 gene locus have been identified in the F2 generation progeny of Fischer 344 rats as raid acetylator and Wistar-Kyoto rats as slow acetylator segregated into three modes (low, intermediates, and high) with simple Mendelian inheritance. The metabolic activity of NAT2 of the intermediate and rapid acetylators is significant1y greater than slow acetylator, but the metabolic activity of rapid acetylator is not significantly different from Intermediate type. Therefore, we could observe that complete trimodal NAT2 genotypic alleles and incomplete trimodal NAT2 metabolic phenotypic distribution in tile F2 hybrid rats. These observations suggest that the relationships between NAT2 genotype and metabolic phenotype exists and F2 hybrid (Fischer 344: Wistar-Kyoto) animal models about NAT2 polymorphism might be applied in the toxicity and pharmacogenetic studies of arylamine drugs and carcinogens.

Marker-assisted Genotype Analysis of Bulb Colors in Segregating Populations of Onions (Allium cepa)

  • Kim, Sunggil;Bang, Haejeen;Yoo, Kil-Sun;Pike, Leonard M.
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.192-197
    • /
    • 2007
  • Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.

Signatures of positive selection underlying beef production traits in Korean cattle breeds

  • Edea, Zewdu;Jung, Kyoung Sub;Shin, Sung-Sub;Yoo, Song-Won;Choi, Jae Won;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.62 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • The difference in the breeding programs and population history may have diversely shaped the genomes of Korean native cattle breeds. In the absence of phenotypic data, comparisons of breeds that have been subjected to different selective pressures can aid to identify genomic regions and genes controlling qualitative and complex traits. In this study to decipher genetic variation and identify evidence of divergent selection, 3 Korean cattle breeds were genotyped using the recently developed high-density GeneSeek Genomic Profiler F250 (GGP-F250) array. The three Korean cattle breeds clustered according to their coat color phenotypes and breeding programs. The Heugu breed reliably showed smaller effective population size at all generations considered. Across the autosomal chromosomes, 113 and 83 annotated genes were identified from Hanwoo-Chikso and Hanwoo-Heugu comparisons, respectively of which 16 genes were shared between the two pairwise comparisons. The most important signals of selection were detected on bovine chromosomes 14 (24.39-25.13 Mb) and 18 (13.34-15.07 Mb), containing genes related to body size, and coat color (XKR4, LYN, PLAG1, SDR16C5, TMEM68, CDH15, MC1R, and GALNS). Some of the candidate genes are also associated with meat quality traits (ACSF3, EIF2B1, BANP, APCDD1, and GALM) and harbor quantitative trait locus (QTL) for beef production traits. Further functional analysis revealed that the candidate genes (DBI, ACSF3, HINT2, GBA2, AGPAT5, SCAP, ELP6, APOB, and RBL1) were involved in gene ontology (GO) terms relevant to meat quality including fatty acid oxidation, biosynthesis, and lipid storage. Candidate genes previously known to affect beef production and quality traits could be used in the beef cattle selection strategies.

QTL Mapping of Agronomic Traits Using an Introgression Line Population Derived from an Intersubspecific Cross in Rice

  • Oh, Chang-Sik;Park, In-Kyu;Kim, Dong-Min;Ahn, Sang-Nag
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.470-480
    • /
    • 2010
  • The objectives of this study were to identify QTLs for agronomic traits using introgression lines from a cross between a japonica weedy rice and a Tongil-type rice. A total of 75 introgression lines developed in the Tongil-type rice were characterized. A total of 368 introgressed segments including 285 homozygous and 83 heterozygous loci were detected on 12 chromosomes based on the genotypes of 136 SSR markers. Each of 75 introgression lines contained 0-9 homozygous and 0-8 heterozygous introgressed segments with an average of 5.8 segments per line. A total of 31 quantitative and 2 qualitative loci were identified for 14 agronomic traits and each QTL explained 4.1% to 76.6% of the phenotypic variance. Some QTLs were clustered in a few chromosomal regions. A first cluster was located near RM315 and RM472 on chromosome 1 with QTLs for 1,000 grain weight, culm length, grain width and thickness. Another cluster was detected with four QTLs for 1,000 grain weight, grain length, grain width and grain length/width ratio near the SSR marker RM249 on chromosome 5. Among the 31 QTLs, 9 (28.1%) Hapcheonaengmi3 alleles were beneficial in the Milyang23 background. ILs would be useful to confirm QTLs putatively detected in a primary mapping population for complex traits and serve as a starting point for map-based cloning of the QTLs. Additional backcrosses are being made to purify nearly isogenic lines (NILs) harboring a few favorable Hapcheonaengmi3 alleles in Milyang23 background.

Confirmation of $F_1$ Hybridity Using RAPD Markers in Soybean

  • Chung, Jong-Il;Ko, Mi-Suk;Shim, Jung-Hyun;Kim, Seok-Hyeon;Kang, Jin-Ho
    • Plant Resources
    • /
    • v.2 no.1
    • /
    • pp.22-25
    • /
    • 1999
  • Molecular markers are useful to confirm the hybridity of F1 plant derived from cross of two homozygous parents with similar morphological traits. RAPD markers were used to test F1 hybrid plant obtained from cross of two homozygous soybean (Glycine max) parents. Fl plant for cross I was made from the mating of Hobbit87 (female) and L63-1889 (male) and Fl plant for cross II was obtained from the mating of H1053 (female) and L63-1889 (male). Selfing plant per each cross was also obtained. Among 20 Operon primers used, OPA04 and OPA09 show polymorphism between cross I and II parent. Band in size 1Kb of OPA04 and 2.1Kb of OPA09 primer was polymorphic band. This fragment identified Fl hybrid plant and selfing plant in cross I and II. Female parent Hobbit87 in cross I and H1053 in cross II has no this fragment (recessive allele). However, male parent L63-1889 and Fl hybrid plant in cross I and II has this size of polymorphic band (dominant allele). This indicated that Fl hybrid and selfing plants were detected by RAPD marker before phenotypic marker would be used to identify Fl hybridity. Amplification products of selfing plant for cross I and II were completely same to the those of female parent. When mature, flower color of Fl hybrid plant in cross I and II was purple and flower color of selfing plant in cross I and II was white. Purple flower is dominant trait. Fl hybridity was successfully detected at very early growth stage using RAPD marker. Therefore, RAPD marker can be used broadly to confirm Fl hybridity in many crops.

  • PDF

Genetic parameters and correlations of related feed efficiency, growth, and carcass traits in Hanwoo beef cattle

  • Mehrban, Hossein;Naserkheil, Masoumeh;Lee, Deuk Hwan;Ibanez-Escriche, Noelia
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.824-832
    • /
    • 2021
  • Objective: This study aimed to estimate the genetic parameters and genetic correlations for related feed efficiency, growth, and carcass traits in Hanwoo cattle. Methods: Phenotypic data from 15,279 animals born between 1989 and 2015 were considered. The related feed efficiency traits considered were Kleiber ratio (KR) and relative growth rate (RGR). Carcass traits analyzed were backfat thickness (BT), carcass weight, eye muscle area, and marbling score. Growth traits were assessed by the average daily gain (ADG), metabolic body weight (MBW) at mid-test age from 6 to 24 months, and yearling weight (YW). Variance and covariance components were estimated using restricted maximum likelihood using nine multi-trait animal models. Results: The heritability estimates for related feed efficiency (0.28±0.04 for KR and RGR) and growth traits (0.26±0.02 to 0.33±0.04) were moderate, but the carcass traits tended to be higher (0.38±0.04 to 0.61±0.06). The related feed efficiency traits were positively genetically correlated with all the carcass traits (0.37±0.09 to 0.47±0.07 for KR, and 0.14±0.09 to 0.37±0.09 for RGR), except for BT, which showed null to weak correlation. Conversely, the genetic correlations of RGR with MBW (-0.36±0.08) and YW (-0.30±0.08) were negative, and those of KR with MBW and YW were close to zero, whereas the genetic correlations of ADG with RGR (0.40±0.08) and KR (0.70±0.05) were positive and relatively moderate to high. The genetic (0.92±0.02) correlations between KR and RGR were very high. Conclusion: Sufficient genetic variability and heritability were observed for traits of interest. Moreover, the inclusion of KR and/or RGR in Hanwoo cattle breeding programs could improve the feed efficiency without producing any unfavorable effects on the carcass traits.