• Title/Summary/Keyword: Phenology analysis

Search Result 47, Processing Time 0.033 seconds

Multi-temporal analysis of vegetation indices for characterizing vegetation dynamics

  • Javzandulam, Tsend-Ayush;Tateishi, Ryutaro;Kim, Dong-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.405-407
    • /
    • 2003
  • An attempt has been in this study to delineate the characteristics of spectral signatures of the vegetation in terms of various VIs, particularly made the Normalized Difference Vegetation Index(NDVI), Modified Soil Adjusted Vegetation Index2(MSAVI2) and Enhanced Vegetation Index(EVI). Multitemporal SPOT-4 VEGETATION data from 1998 to 2002 have been used for the analysis. They have been compared with each other for their similarities and differences. The correlations between the vegetation indices observed at various degree of vegetation coverage during their different stages of growth were examined. All of the VIs have shown qualitative relationships to variations in vegetation. Apparently, the NDVI and MSAVI2 are highly correlated for all of the temporal changes, representing the different stages of phenology.

  • PDF

CONSTRUCTING DAILY 8KM NDVI DATASET FROM 1982 TO 2000 OVER EURASIA

  • Suzuki Rikie;Kondoh Akihiko
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.18-21
    • /
    • 2005
  • The impact of the interannual climatic variability on the vegetation sensitively appears in the timing of phenological events such as green-up, mature, and senescence. Therefore, an accurate and temporally high-resolution NDVI dataset will be required for analysis on the interannual variability of the climate-vegetation relationship. We constructed a daily 8km NDVI dataset over Eurasia based on the 8km tiled data of Pathfinder A VHRR Land (PAL) Global daily product. Cloud contamination was successfully reduced by Temporal Window Operation (TWO), which is a method to find optimized upper envelop line of the NDVI seasonal change. Based on the daily NDVI time series from 1982 to 2000, an accurate (daily) interannual change of the phenological events will be analyzed.

  • PDF

Analysis of a crop growth model using Unified Modeling Language

  • Kim, Kwang Soo;Kim, Do-Gyeom;Kim, Sey Hyun;Hwang, Grim;Jeong, Haneul
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.12-14
    • /
    • 2011
  • Crop growth simulation models have been developed as research and management tools. When these models are needed to incorporate new knowledge on phenology and physiology of crops, programming languages have been used for development and documentation of these models. However, researchers may have limited skill in programming languages. Furthermore, software developer may find it challenging to improve the crop models because documentation of the models are rarely available. The Unified Modeling Language (UML) can provide a simple approach for development and documentation of model. A template for implementation of the model can be obtained using the UML, which would facilitate code re-use and model improvement.

  • PDF

PHENOLOGICAL ANALYSIS OF NDVI TIME-SERIES DATA ACCORDING TO VEGETATION TYPES USING THE HANTS ALGORITHM

  • Huh, Yong;Yu, Ki-Yun;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.329-332
    • /
    • 2007
  • Annual vegetation growth patterns are determined by the intrinsic phenological characteristics of each land cover types. So, if typical growth patterns of each land cover types are well-estimated, and a NDVI time-series data of a certain area is compared to those estimated patterns, we can implement more advanced analyses such as a land surface-type classification or a land surface type change detection. In this study, we utilized Terra MODIS NDVI 250m data and compressed full annual NDVI time series data into several indices using the Harmonic Analysis of Time Series(HANTS) algorithm which extracts the most significant frequencies expected to be presented in the original NDVI time-series data. Then, we found these frequencies patterns, described by amplitude and phase data, were significantly different from each other according to vegetation types and these could be used for land cover classification. However, in spite of the capabilities of the HANTS algorithm for detecting and interpolating cloud-contaminated NDVI values, some distorted NDVI pixels of June, July and August, as well as the long rainy season in Korea, are not properly corrected. In particular, in the case of two or three successive NDVI time-series data, which are severely affected by clouds, the HANTS algorithm outputted wrong results.

  • PDF

Assessment of genetic diversity and distance of three Cicuta virosa populations in South Korea

  • Nam, Bo Eun;Kim, Jae Geun;Shin, Cha Jeong
    • Journal of Ecology and Environment
    • /
    • v.36 no.3
    • /
    • pp.205-210
    • /
    • 2013
  • Cicuta virosa L. (Apiaceae) is a perennial emergent plant designated as an endangered species in South Korea. According to the former records, only four natural habitats remain in South Korea. A former study suggested that three of four populations (Pyeongchang: PC, Hoengseong: HS, Gunsan: GS) would be classified as different ecotypes based on their different morphological characteristics and life cycle under different environmental conditions. To evaluate this suggestion, we estimated genetic diversity in each population and distance among three populations by random amplification of polymorphic DNA. Seven random primers generated a total of 61 different banding positions, 36 (59%) of them were polymorphic. Nei's gene diversity and the Shannon diversity index increased in the order of PC < HS < GS, which is the same order of population size. In the two-dimensional (2D) plot of first two principal components in principal component analysis with the presence of 61 loci, individuals could be grouped as three populations easily (proportion of variance = 0.6125). Nei's genetic distance for the three populations showed the same tendency with the geographical distance within three populations. And it is also similar to the result of discriminant analysis with the morphological or life-cycle factors from the previous study. From the results, we concluded that three different populations of C. virosa should be classified as ecotypes based on not only morphology and phenology but genetic differences in terms of diversity and distance as well.

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Phenophase Extraction from Repeat Digital Photography in the Northern Temperate Type Deciduous Broadleaf Forest (온대북부형 낙엽활엽수림의 디지털 카메라 반복 이미지를 활용한 식물계절 분석)

  • Han, Sang Hak;Yun, Chung Weon;Lee, Sanghun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.361-370
    • /
    • 2020
  • Long-term observation of the life cycle of plants allows the identification of critical signals of the effects of climate change on plants. Indeed, plant phenology is the simplest approach to detect climate change. Observation of seasonal changes in plants using digital repeat imaging helps in overcoming the limitations of both traditional methods and satellite remote sensing. In this study, we demonstrate the utility of camera-based repeat digital imaging in this context. We observed the biological events of plants and quantified their phenophases in the northern temperate type deciduous broadleaf forest of Jeombong Mountain. This study aimed to identify trends in seasonal characteristics of Quercus mongolica (deciduous broadleaf forest) and Pinus densiflora (evergreen coniferous forest). The vegetation index, green chromatic coordinate (GCC), was calculated from the RGB channel image data. The magnitude of the GCC amplitude was smaller in the evergreen coniferous forest than in the deciduous forest. The slope of the GCC (increased in spring and decreased in autumn) was moderate in the evergreen coniferous forest compared with that in the deciduous forest. In the pine forest, the beginning of growth occurred earlier than that in the red oak forest, whereas the end of growth was later. Verification of the accuracy of the phenophases showed high accuracy with root-mean-square error (RMSE) values of 0.008 (region of interest [ROI]1) and 0.006 (ROI3). These results reflect the tendency of the GCC trajectory in a northern temperate type deciduous broadleaf forest. Based on the results, we propose that repeat imaging using digital cameras will be useful for the observation of phenophases.

Estimation of the Source Adult Population for Agrotis ipsilon (Lepidoptera: Noctuidae) Appearing in Early Spring in Korea: An Approach with Phenology Modeling (국내에서 이른 봄 출현하는 검거세미밤나방 성충집단의 기원 추정: 페놀로지 모형을 통한 접근)

  • Sori Choi;Jinwoo Heo;Subin Kim;Myeongeun Jwa;Yonggyun Shin;Dong-Soon Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • The black cutworm, Agrotis ipsilon (Hufnagel), is an important crop pest worldwide that feeds more than 80 plant species including cabbage, potato, maize, wheat and bean, and this moth is a typical pest attacking underground parts of crops. It has been known in farm booklets that the larvae of A. ipsilon overwinter in the soil in Korea, but no definitive data exist yet. This study was conducted to evaluate that the specific appearance time of A. ipsilon observed actually in the field could be explained when we assumed that this pest overwinters in a form of larvae or pupae. Degree day-based phenology models were applied for tracking forward or backward to find the predicted developmental stage which developed at a specific stage found in the field. As a result of the analysis, it was confirmed that an initial population could be established in a group that does not overwinter as larvae or pupae in Korea. In other words, the appearance of adults in early March to April could not be explained by the presence of domestic overwintering populations. Populations that overwinter as larvae or pupae in Korea were able to emerge as adults in June to July at the earliest. Therefore, the group of adults appearing in early spring is highly likely to be a population that migrated from outside Korea. Taken together, it was estimated that the colony of A. ipsilon in Korea would be formed by a mixture of a migrant population through long-distance migration and a overwintering population.

Long-term and multidisciplinary research networks on biodiversity and terrestrial ecosystems: findings and insights from Takayama super-site, central Japan

  • Hiroyuki Muraoka;Taku M. Saitoh;Shohei Murayama
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.228-240
    • /
    • 2023
  • Growing complexity in ecosystem structure and functions, under impacts of climate and land-use changes, requires interdisciplinary understandings of processes and the whole-system, and accurate estimates of the changing functions. In the last three decades, observation networks for biodiversity, ecosystems, and ecosystem functions under climate change, have been developed by interested scientists, research institutions and universities. In this paper we will review (1) the development and on-going activities of those observation networks, (2) some outcomes from forest carbon cycle studies at our super-site "Takayama site" in Japan, and (3) a few ideas how we connect in-situ and satellite observations as well as fill observation gaps in the Asia-Oceania region. There have been many intensive research and networking efforts to promote investigations for ecosystem change and functions (e.g., Long-Term Ecological Research Network), measurements of greenhouse gas, heat, and water fluxes (flux network), and biodiversity from genetic to ecosystem level (Biodiversity Observation Network). Combining those in-situ field research data with modeling analysis and satellite remote sensing allows the research communities to up-scale spatially from local to global, and temporally from the past to future. These observation networks oftern use different methodologies and target different scientific disciplines. However growing needs for comprehensive observations to understand the response of biodiversity and ecosystem functions to climate and societal changes at local, national, regional, and global scales are providing opportunities and expectations to network these networks. Among the challenges to produce and share integrated knowledge on climate, ecosystem functions and biodiversity, filling scale-gaps in space and time among the phenomena is crucial. To showcase such efforts, interdisciplinary research at 'Takayama super-site' was reviewed by focusing on studies on forest carbon cycle and phenology. A key approach to respond to multidisciplinary questions is to integrate in-situ field research, ecosystem modeling, and satellite remote sensing by developing cross-scale methodologies at long-term observation field sites called "super-sites". The research approach at 'Takayama site' in Japan showcases this response to the needs of multidisciplinary questions and further development of terrestrial ecosystem research to address environmental change issues from local to national, regional and global scales.

Intercomparison of interannual changes in NDVI from PAL and GIMMS in relation to evapotranspiration over northern Asia

  • Suzuki Rikie;Masuda Kooiti;Dye Dennis
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.162-165
    • /
    • 2004
  • The authors' previous study found an interannual covariability between actual evapotranspiration (ET) and the Normalized Difference Vegetation Index (NDVI) over northern Asia. This result suggested that vegetation controls interannual variation in ET. In this prior study, NDVI data from the Pathfinder AVHRR Land (PAL) dataset were analyzed. However, studies of NDVI interannual change are subject to uncertainty, because NDVI data often contain errors associated with sensor- and atmosphere-related effects. This study is aimed toward reducing this uncertainty by employing NDVI dataset, from the Global Inventory Monitoring and Modeling Studies (GIMMS) group, in addition to PAL. The analysis was carried out for the northern Asia region from 1982 to 2000. 19-year interannual change in PAL-NDVI and GIMMS-NDVI were both compared with interannual change in model-assimilated ET. Although the correlation coefficient between GIMMS-NDVI and ET is slightly less than for PAL-NDVI and ET, for both NDVI datasets the annual maximum correlation with ET occurs in June, which is near the central period of the growing season. A significant positive correlation between GIMMS-NDVI and ET was observed over most of the vegetated land area in June as well as PAL-NDVI and ET. These results reinforce the authors' prior research that indicates the control of interannual change in ET is dominated by interannual change in vegetation activity.

  • PDF