• Title/Summary/Keyword: Phenolic foam insulation

Search Result 7, Processing Time 0.023 seconds

Study on Long-term Performance of Phenolic Foam Insulation through Accelerated Aging Test (가속화 시험을 통한 페놀폼 단열재의 장기성능 비교분석에 관한 연구)

  • Kim, Jin-Hee;Kim, Sang-Myung;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.2
    • /
    • pp.11-23
    • /
    • 2020
  • The application of the high-performance insulation materials for buildings seems to be an essential measure for reducing energy use in buildings. Phenolic foam is a readily available insulation material with thermal conductivity of about 0.018 to 0.020 W/(mK). It has the advantage of higher thermal resistance and better fire resistance compared to other conventional building insulation materials. Insulation material used for building envelope is regarded as one of the decisive factors for building's energy load. Furthermore, the degradation of its thermal performance over time increasingly affects the building's energy use demand. Generally, the life span of conventionally built buildings is expected to be more than 50 years, so the long-term performance of insulation materials is critical. This paper aims to evaluate the long-term performance of phenolic form boards through an accelerated aging test. The tests were conducted according to BS EN 13166 and KS M ISO 11561. Based on the results of the accelerated aging test, the thermal performance variation of the material was analyzed, and then its aged value after 25 years was computed. Also, the characteristics of the phenolic foam board's long-term performance were also examined based on the standard testing methods adopted.

Study on the Fire Suppression by Heat Transfer of Thermal Insulation Materials (건축물 외단열재의 열전달평가를 통한 화재 억제 방안 연구)

  • Ryu, Hwa Sung;Shin, Sang Hun;Song, sung young;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.277-278
    • /
    • 2018
  • Improvement of insulation performance of buildings is a major part. Adiabatic method The adiabatic method minimizes the heat loss of the building. External insulation uses insulation to prevent fire. Ambient air hazards are less prone to fire. When a fire occurs, a phenolic pattern is formed and bond strength with the wall increases. EPS insulation and phenol foam were used to compare external heat transfer and external heat transfer. The heat transfer properties of phenolic foam and styrofoam were evaluated as follows. In the mortar and styrofoam structure, the problem of styrofoam reaching the burning point occurred before the collapse of the mortar, and the phenol foam had a problem in that when the direct fire was continued on the phenol foam. The characteristics of continuous infiltration appeared. In the case of mortar and phenol foam + styrofoam, the heat penetrated into the interior due to the shrinkage due to the shrinkage of the carbon screen on the phenol foam. However, when reinforced with glass mesh on the outer surface, And to reduce infiltration.

  • PDF

Strength Properties of Multi-layered Insulation according to the Type of Configuration (다층형 단열재의 구성 형식에 따른 강도 특성 연구)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.141-142
    • /
    • 2019
  • As part of the recent low-energy policy, insulation standards for buildings are increasing every year. In addition, the conventional styrofoam heat insulation material has a problem in that the thickness of the heat insulation material to achieve the standard heat transmission rate is rapidly increased. Although the risk of spreading the structure vulnerable to fire due to insufficient spacing between buildings due to thickened insulation is increasing, the high cost of high efficiency insulation is difficult to solve. On the other hand, it is known that the method to be used as a formwork using insulation is excellent in cost reduction effect by reducing the amount of formwork used and simplifying the subsequent insulation work. The purpose of this study is to evaluate the strength characteristics of multi - layered insulation materials with appropriate strength by reducing the thickness of the insulation by appropriately combining high performance phenolic foam insulation and styrofoam insulation.

  • PDF

SOrganic matter insulation by type of Study on pH change according to underwater settling period (유기질 단열재 종류별 수중정치기간에 따른 pH 변화에 관한 연구)

  • Hong, snag-hun;You, Nam Gyu;Seo, Eun-Seok;Kim, Han-nah;Kim, Bong-Joo;Jung, Ui-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.87-88
    • /
    • 2019
  • Research has been conducted in many fields for the zero energy of domestic buildings. Among them, the development of insulation has become an essential element. Accordingly, researches are being made to improve the performance of organic insulating materials, and PF boards having the lowest thermal conductivity among organic insulating materials have been in the spotlight. However, problems have arisen due to the problems of durability of insulation materials such as PF boards and past acidification, and the durability of insulation materials is deteriorated when moisture or water enters due to crack gaps during the insulation of the basement layer or the external insulation method. In regard to the durability of the insulation, when the organic insulators of different kinds were placed in water, the pH was weakly basic in all organic insulation materials except PF, and the PF was about 4 pH. As a result, the PF should be continuously reviewed, and further analysis should be carried out to determine what causes acidification.

  • PDF

Research on the Architectural Applications of High-Performance Vacuum Insulation Panel (고성능 진공단열재의 건축적인 적용에 관한 연구)

  • Kwon, Young Cheol;Kim, Suk
    • Land and Housing Review
    • /
    • v.10 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • Vacuum Insulation Panel(VIP) has the lowest thermal conductivity among present insulations. It is composed of envelope, core material and getter. Aluminum film is usually used as the envelope of VIP, and it is important component to decide the useful life of VIP. In this research, the thermophysical properties of incombustible fiber glass core VIP were investigated with the possibility of its architectural applications. The results of this research can be summarized as follows: 1) The thermal conductivity of 20mm-thick fiber glass core VIP is resulted as 0.00177W/m·K, which means that 20mm-thick VIP can meet all the reinforced insulation guideline and it can be used in any envelope of any region in Korea. 2) As a result of the test of incombustion and gas toxicity, fiber glass core VIP was suitable for incombustible material. 3) As the test result for the long term thermal conductivity, fiber glass core VIP was found out that it would keep above 10 times insulating performance than polystyrene foam and glass fiber. 4) To meet the thermal transmittance of 0.12W/㎡K, limited-combustible insulation of expanded polystyrene foam and phenolic foam should be used respectively as thick as above 280mm and 170mm, incombustible VIP can meet the same insulation level with 20mm thickness. 5) The price competitiveness of incombustible VIP to meet the thermal transmittance of 0.12W/㎡·K was about 1,500won/㎡ higher than that of phenolic foam.

Deflection Characteristics of Permanent Formwork Using Multi-layer Insulation (다층형 단열재를 사용한 영구거푸집의 처짐 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Yong;Kim, Deuck Mo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.130-131
    • /
    • 2019
  • As part of recent low-energy policies, thermal insulation standards for buildings are being tightened every year. In addition, the conventional styrofoam insulating material has a problem that the thickness of the heat insulating material to achieve a standard heat permeability is rapidly increased. Due to the thick insulation, there is a high risk of spreading vulnerable structures such as fire due to lack of space between buildings. On the other hand, the method of using the insulation as a formwork is known to be excellent cost saving effect through the reduction of the formwork usage and the simplification of the external insulation work. In order to solve this problem, this study aims to fabricate a multi-layered insulator that combines high-performance phenolic foam insulation and styrofoam insulation and evaluate the deflection characteristics for use as formwork.

  • PDF

A Study on the Combustion Characteristics of Organic Insulation Materials According to the Gas Toxicity Evaluation Method (가스유해성 평가방법에 따른 유기단열재의 연소특성에 관한 연구)

  • Shim, Ji-Hun;Lee, Jae-Geol;Han, Kyoung-Ho;Kim, Ju-Wan;Song, Seok-Hun;Jo, Hyung-Won;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.519-524
    • /
    • 2022
  • Domestic building finishing materials are being evaluated according to KS F 2271 standards according to the notification of the Ministry of Land, Infrastructure and Transport, and this test is evaluated using laboratory animals. In this study, experiments were conducted on highly combustible organic insulation materials such as EPS, urethane, and phenolic foam. The purpose of this study was to analyze the cause of the behavioral suspension of the experimental mice by measuring the average behavioral suspension time of the mice caused by the harmful gas generated when these three types of insulation materials were burned. FTIR analysis and smoke density experiment were performed as a cause analysis method for the behavioral suspension of mice, and the experimental results were analyzed by dividing the causes of behavioral suspension into suffocation by particulate matter and toxic inhalation by gaseous substances. As a result of the test, urethane was evaluated as the most harmful insulation material, and as a result of FTIR analysis and smoke density test as a cause analysis for the gas toxicity test results, it is judged that the behavioral stop of the rats by suffocation is higher than the effect of toxic inhalation. This study is a basic study on the cause analysis of harmful gases, and it will be necessary to prepare the toxicity basis and analyze various materials and gases.