• Title/Summary/Keyword: Phenol derivatives

Search Result 86, Processing Time 0.022 seconds

Elucidation of Anti-tumor Initiator and Promoter Derived from Seaweed-3 : Anti-tumor Promoters of Ecklonia stolonifera Extracts (해조류 중의 anti-tumor initiator 및 promoter의 해석-3 : 곰피 추출물중의 발암 promotion억제 인자)

  • PARK Young-Beom;KIM In-Soo;YOO Sung-Jae;AHN Jong-Khan;LEE Tae-Gee;PARK Douck-Chon;KIM Seon-Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.587-593
    • /
    • 1998
  • To elucidate anti-tumor promoter from seaweed, the anti-tumor promoting activity of Ecklonia stolonifera, Undaria pinnatifida and Laminaria japonica extracts were determined by Epstein-Barr virus (EBV)-early antigen (EA) induction caused by a tumor promoter, teleocidin B-4. The methanol extracts of seaweed were subsequently fractionated with diethyl ether, distilled water, chloroform and ethyl acetate. Among the solvent fractions tested, chloroform and ethyl acetate fraction of E. stolonifera showed a high anti-tumor promoting activity at the levels of 88.0 and $85.9\%$ by the addition of 20 ${\mu}g/m{\ell}$, respectively. To characterize anti-tumor promoters from solvent fractions of E. stolonifera, the effects of phenols, chlorophyll derivatives and carotenoids on the anti-tumor promoting activity were investigated. Phenols, such as bromophenol and phloroglucinol showed anti-tumor promoting activity of $57\~66\%$ at 20 ${\mu}g/m{\ell}$. Pigments, such as chlorophylls and carotenoids exerted high anti-tumor promoting activities. Chlorophyll a and pheophorbide a exhibited the activity of $77.4\%$ and $66.6\%$ at 5${\mu}M/m{\ell}$, respectively. The active compounds of carotenoids were tentatively identified as lutein and $\alpha-cryptoxanthin$ from the profiles of visible spectra and R_f value of their authentic compounds, and showed anti-tumor promoting activities of $76.9\%$ and $84.4\%$ at dose of 20 ${\mu}g/m{\ell}$, respectively.

  • PDF

Preparation of Bio-oil from Ginkgo Leaves through Fast Pyrolysis and its Properties (은행잎 바이오매스로부터 급속 열분해를 통한 바이오-오일 생산 및 특성 연구)

  • In-Jun Hwang;Jae-Rak Jeon;Jinsoo Kim;Seung-Soo Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.200-216
    • /
    • 2023
  • Ginkgo leaves are considered waste biomass and can cause problems due to the strong insecticidal actions of ginkgolide A, B, C, and J and bilobalide. However, Ginkgo leaf biomass has high organic matter content that can be converted into fuels and chemicals if suitable technologies can be developed. In this study, the effect of pyrolysis temperature, minimum fluidized velocity, and Ginkgo leaf size on product yields and product properties were systematically analyzed. Fast pyrolysis was conducted in a bubbling fluidized bed reactor at 400 to 550℃ using silica sand as a bed material. The yield of pyrolysis liquids ranged from 33.66 to 40.01 wt%. The CO2 and CO contents were relatively high compared to light hydrocarbon gases because of decarboxylation and decarbonylation during pyrolysis. The CO content increased with the pyrolysis temperature while the CO2 content decreased. When the experiment was conducted at 450℃ with a 3.0×Umf fluidized velocity and a 0.43 to 0.71 mm particle size, the yield was 40.01 wt% and there was a heating value of 30.17 MJ/kg, respectively. The production of various phenol compounds and benzene derivatives in the bio-oil, which contains the high value products, was identified using GC-MS. This study demonstrated that fast pyrolysis is very robust and can be used for converting Ginkgo leaves into fuels and thus has the potential of becoming a method for waste recycling.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Kinetic Studies of Lactic Acid Fermentation (Part 3) Effect of Phenol Derivatives on Fermentation (유산균발효에 관한 동력학적 연구 (제3보) 발효에 미치는 Phenol 유도체의 영향)

  • LEE Keun-Tai;YANG Hyeun-Suk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.212-216
    • /
    • 1981
  • The growth of Lactobacillus bulgaricus treated with vanillin, ortho-vanillin and guaiaco1 was studied on synthetic medium in mechanically agitated chemostat culture, The exponential-phase growth rate exhibited a maximum at the cells treated with 50 ppm vanillin. That stimulation, however, appears to be an effect on growth rate rather than total cell growth. And the others were inhibited by the chemicals. Much greater inhibition in growth of the cells treated with 100 ppm of each chemical than oars treated with 50 ppm was observed after 25 hour fomentation. For aerobic microbes, the alcohol dehydrogenase reaction is enhanced for the reproduction of NAD, which consequently cause to stimulate fermentation. For micro-aerophilic microbes , however, the same effect was not observed at the present study at least in the case of cell concentration. However except f or one treated with 50 ppm vanillin the same effect was observed in the case of growth is to. From the result using the glucose as a substrate, it was found that the cell concentrations measured in terms of ultimate optical density (UOB/ml), were 0.96 and 0.92, when treated with 50 and 100 ppm vanillin; 0.40 and 0.45 when treated with ortho-vanillin 50 and 100 ppm: 0.49 and 0.47, when treated with guaiacol 50 and 100 ppm. The specific growth rates were 0.44, 0.15, 0.25, 0.29, 0.37, and 0.34; the specific production rates wire 0.33, 0.15, 0.16, 0.22, 0.28, and 0.26 and the glucose concentrations (g/1) after 25 hour fermentation were 23.5, 32.8, 31.5, 29.5, 28.0 and 28.8, these all in the same sequences as the first.

  • PDF

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo phenol Derivatives(II) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(II))

  • Lim, Jae-Hee;Seol, Kyung-Mi;An, Hye-Sook;Chung, Koo-Chun;Lee, Chang-Heon;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.364-372
    • /
    • 1996
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[2-(2-thiazolylazo)-p-cresol](TAC) chelating resin were studied by elution method for selective separation, concentration and recovery of trace metal ions in sea water. The optimum conditions for the sorption of metal ions were examined with respect to flow rate, pH and concentration of buffer solution. The overall capacities of some metal ions on this chelating resin were 0.41mmol U(VI)/g resin, 0.55mmol Th(IV)/g resin, 0.43mmol Cu(II)/g resin, and 0.32mmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was found as Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Cd(II)>Mn(II). Desorption of characteristics for metal ions were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that most of metal ions except Zr(IV) showed high desorption efficiency with 2M $HNO_3$. But, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. The resin was applied for separation and preconcentration of trace amount of U(VI) ion from artificial sea water and the recovery of U(IV) was over 96%.

  • PDF