• 제목/요약/키워드: Phenol Degradation

검색결과 175건 처리시간 0.023초

Fenton 처리에 의한 페놀의 분해 특성 (Characteristics of Phenol Degradation by Fenton Treatment)

  • 최석순;염승호;차형준
    • 환경위생공학
    • /
    • 제12권2호
    • /
    • pp.29-35
    • /
    • 1997
  • Phenol, often discharged from petroleum and fine chemical industries is potential carcinogen and was classified into priority pollutant by EPA in USA. It causes serious environmental and health problem if discharged to the environment such as soil or aquifer. The removal efficiency of phenol and COD using Fenton treatment(Hydrogen Peroxide and Ferrous Sulfate) was observed and biodegradability (BOD$_{5}$/COD$_{cr}$) of reaction products were also examined. When 50 mg/l of phenol was treated by Fenton's Reagent(50 mg/l of hydrogen peroxide and 900 mg/l of ferrous sulfate), the removal efficiency of phenol and COD was 100% and 80% respectively in 10 minutes, which suggested this method can be used as actual phenol removal process. The initial biodegradability of 500 mg/l phenol solution was 0.7 but decreased as hydrogen peroxide was increased.

  • PDF

오존, 오존/과산화수소와 오존/활성탄 처리에 의한 페놀 및 그 부산물의 제거에 관한 연구 (A Study on Removal of Phenol and Its By-Product by Ozone, Ozone/Hydrogen Peroxide and Ozone/Granular Activated Carbon)

  • 배현주;김영규;정문호
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.121-129
    • /
    • 1997
  • This study was performed to delineate the removal phenol in solutions using of ozone, ozone/$H_2O_2$ and ozone/GAC. The disinfection by-product of phenol by ozonation, hydroquinone, was analyzed and it's control process was investigated. The followings are the conclusions that were derived from this study. 1. The removal efficiency of phenol by ozonation was 58.37%, 48.34%, 42.15%, and 35.41% which the initial concentration of phenol was 5 mg/l, 10 mg/l, 15 mg/l, and 20 mg/l, respectively. 2. The removal efficiency of phenol by ozonation was 42.95% at pH 4.0 and 69.39% at pH 10, respectively. The removal efficiencies were gradually increased, as pH values were increased. 3. With the ozone/$H_2O_2$ combined system, the removal efficiency of phenol was 72.87%. It showed a more complete degradation of phenol with ozone/$H_2O_2$ compared with ozone alone. 4. When ozonation was followed by filtration on GAC, phenol was completely removed. 5. Oxidation, if carried to completion, truly destroys the organic compounds, converting them to carbon dioxide. Unless reaction completely processed, disinfection by-products would be produced. To remove them, ozone/GAC treatment was used. The results showed that disinfection by-product of phenol by ozonation, hydroquinone, was completely removed. These results suggested that ozone/GAC should also be an appropriate way to remove phenol and its by-product.

  • PDF

TREATMENT OF PHENOL CONTAINED IN WASTE WATER USING THE HETEROGENIZED FENTON SYSTEM

  • Kim, Seong-Bo
    • Environmental Engineering Research
    • /
    • 제12권1호
    • /
    • pp.30-35
    • /
    • 2007
  • Fenton system using homogeneous iron catalyst is very powerful in the degradation of organic compounds, but has a disadvantage to remove Fe ions from water after wastewater treatment. Thus, iron catalyst was bounded to support such as inorganic and polymer materials. The PVP supporting iron catalyst showed a good catalytic performance in degradation of phenol contained in waste water and iron catalyst supported on ${SO_4}^{2-}$ type PVP (KEX 511) showed the best catalytic performance. Also, reaction kinetic study was carried out in this system. Reaction constants on various catalysts was obtained from the pseudo first order equation. Reaction rate constants with the heterogenized $FeCl_2/PVP$ catalyst is a three-fold smaller than that of $FeCl_2$ catalyst.

방향족화합물이 함유된 폐수의 생물학적 처리 (Microbial Degradation of Aromatic Compounds in Industrial Wastewater)

  • 박춘호;김용기;오평수
    • 한국미생물·생명공학회지
    • /
    • 제19권6호
    • /
    • pp.631-636
    • /
    • 1991
  • 방향족화합물을 생분해하는 미생물을 분리하여 생물학적 처리에 응용하기 위해 폐수 및 토양에서 150종의 균을 분리하였다. 그 중에서 COD 제거율과 방향족화합물의 이용능이 가장 우수한 HC107균을 선발하여 Pseudomonas sp.로 동정하였다. 활성슬러지 장치에서 Pseudomonas sp. HC107 배양액을 2ml/day씩 처리하면서 화학, 제약 및 도료공장의 폐수를 혼합하여 연속처리한 결과 처리수의 COD, BOD 및 phenol 제거율이 평균 92.5%, 95.53 및 93%.5로 나타났다.

  • PDF

EFFECTS OF TRANSFORMATION CAPACITY ON COMETABOLIC DEGRADATION OF TRICHLOROETHENE

  • Lee, Seung-Bong;Kim, Geon-Ha
    • Environmental Engineering Research
    • /
    • 제10권2호
    • /
    • pp.79-87
    • /
    • 2005
  • The effects of transformation capacity on cometabolic degradation of trichloroethene (TCE) were evaluated using TCE-degrading actinomycetes pure and mixed culture under various culture conditions. The TCE transformation capacity of the actinomycetes enrichment culture in a batch test with phenol addition was 1.0 mg of TCE/mg of volatile suspended solids (VSS). The resting cell TCE transformation capacity of the actinomycetes pure culture cell was 0.75 mg TCE/mg VSS, which increased to 2.0 mg TCE/mg VSS when phenol was added as an external substrate. When the pure culture had an internal substrate in the form of poly-β-hydroxybutyrate (PHB) at 19% of the cell mass, the resting cell TCE transformation capacity increased from 0.47 to 0.6 mg TCE/mg VSS. The presence of PHB increased transformation capacity by 57%, whereas, the addition of phenol caused more than two fold increase in transformation capacity. The actinomycetes culture showed the highest transformation capacity.

Rhodococcus sp. CP01에 의한 페놀과 6가 크롬이온의 동시 제거 (Simultaneous Removal of Phenol and Hexavalent Chromium by Rhodococcus sp. CP01)

  • 최광현;오영숙;김병동;최성찬
    • 미생물학회지
    • /
    • 제36권4호
    • /
    • pp.279-284
    • /
    • 2000
  • 페놀을 유일한 탄소 및 에너지원으로 이용할 수 있는 Rhodococcus sp. CP01을 침출수로부터 분리하고 회분식 및 연속배양 체제에서 크롬(VI)을 동시에 환원시키는 능력을 추정하였다. 크롬(VI) 환원의 최적 pH 7.0과 페놀 농도 1,000 mg/L에서 최소배지에 주어진 0.25 mM의 크롬(VI)은 CP01 균주에 의해 60시간만에 완전히 환원되었으며, 이때 크롬의 환원속도는 4.17 $\mu$M/hr, 페놀의 분해속도는 38.4 mg.$L^{-1}$.$hr^{-1}$로 측정되었다. 수리학적 체류시간을 100hr으로 유지한 호기성 연속배양 체제에서 크롬(VI)의 농도를 0.0625, 0.125, 그리고 0.25 mM로, 페놀 농도를 1,000~4,000 mg/L까지 변화시키면서 46인간 운전한 결과, 크롬(VI) 0.125 mM과 페놀 3,000 mg/L일 때 유사 steady state에 이르렀으며 이때 크롬의 환원율은 거의 100%로 일정하게 유지되었다. 이 구간에서 계산된 specific reduction rate는 0.34 mg Cr(VI).g $protein^{-1}$.$hr^{-1}$로서 glucose를 생장기질로 이용한 기존의 연구 결과와 유사한 수준으로 나타났다. 이상의 결과로부터 본 연구는 중금속 크롬(VI)과 방향족 화합물인 페놀을 동시에 효과적으로 제거할 수 있는 생물학적 처리 가능성을 보여 주었다.

  • PDF

A New Intermediate in the Degradation of Carbofuran by Sphingomonas sp. Strain SB5

  • Park Myung-Ryeol;Lee Sun-Woo;Han Tae-Ho;Oh Byung-Tack;Shim Jae-Han;Kim In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1306-1310
    • /
    • 2006
  • Sphingomonas sp. strain SB5 could degrade carbofuran and carbofuran-7-phenol to a hydrolytic product, 2-hydroxy-3-(3-methlypropan-2-o1)phenol, and several red metabolites. However, the chemical structures of the red metabolites have largely remained unidentified. In this study, we identified the structure of one of the red metabolites as 5-(2-hydroxy-2-methyl-propyl)-2,2-dimethyl- 2,3-dihydro-naphtho[2,3-6]furan-4,6,7,9-tetrone by using mass spectrometric and NMR ($^1$H, $^{13}$C) analyses. It is suggested that the red metabolite resulted from condensation of some metabolites in the degradation of 2-hydroxy-3-(3-methlypropan-2-o1)phenol, a hydrolytic product derived from carbofuran. To our knowledge, this is the first paper to report a red metabolite in bacterial degradation of the insecticide carbofuran.

졸-겔법으로 제조된 $xTiO_2$-$ySiO_2$ 분말에 의한 유기물의 광분해 (Photocatalytic Degradation of Organic Compounds over $xTiO_2$-$ySiO_2$ Powders Prepared by Sol-Gel Method)

  • 양천회;이봉철
    • 한국응용과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.130-136
    • /
    • 2008
  • $xTiO_2$-$ySiO_2$ system photocatalysts were developed by sol-gel method based on the change of production parameters, and their structure of crystallization and the specific surface area were measured. Considering the efficiency of the ethanol and phenol degradation using the catalyst, the conclusions were obtained as follows: By means of X-ray analysis of $xTiO_2$-$ySiO_2$ powder that is obtained from Titanium and Silicon alkoxide by sol-gel process, it is shown that crystal structure of anatase type is a dominating structure and, on the other hand, the structure of rutile also partly exists. The increase of $SiO_2$ contents causes the decrease of the degree of crystallization of the gel, whereas the specific surface area preferentially increases. It is shown that more than 90% of ethanol and phenol are degraded when reaction time is about three and an hours, and the maximum degradation rate of ethanol and phenol is shown in $60TiO_2$-$40SiO_2$ catalyst.

Preparation and characterization of boron-nitrogen coordination phenol resin/SiO2 nanocomposites

  • Gao, J.G.;Zhai, D.;Wu, W.H.
    • Advances in materials Research
    • /
    • 제3권1호
    • /
    • pp.259-269
    • /
    • 2014
  • The boron-nitrogen-containing phenol-formaldehyde resin (BNPFR)/$SiO_2$ nanocomposites (BNPFR/$SiO_2$) were synthesized in-situ, and structure of BNPFR/$SiO_2$ nanocomposites was characterized by FTIR, XRD and TEM. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposites cured with different nano-$SiO_2$ content are determined by torsional braid analysis (TBA). The thermal degradation kinetics was investigated by thermogravimetric analysis (TGA). The results show that nano-$SiO_2$ particulate with about 50 nm diameter has a more uniformly distribution in the samples. The loss modulus peak temperature $T_p$ of BNPFR/$SiO_2$ nanocomposite is $214^{\circ}C$ when nano-$SiO_2$ content is 6 wt%. The start thermal degradation temperature $T_{di}$ is higher about $30^{\circ}C$ than pure BNPFR. The residual rate (%) of nanocomposites at $800^{\circ}C$ is above 40 % when nano-$SiO_2$ content is 9 %. The thermal degradation process is multistage decomposition and following first order.

Biodegradation of Phenol by a Trichloroethylene-cometabolizing Bacterium

  • Park, Geun-Tae;Son, Hong-Joo;Kim, Jong-Goo;Lee, Sang-Joon
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권1호
    • /
    • pp.61-66
    • /
    • 1998
  • A microorganism which degrades phenol and co-metabolizes trichloroethylene (TCE) was isolated from Yangsan stream after enrichment in a medium containing phenol as the sole carbon source. The isolate EL-43P was identified as the genus Rhodococcus by its morphological, cultural and physiological characteristics. Phenol-induced cells of Rhodococcus sp. EL-43P degraded TCE. Toluene and nutrient broth could not replace the phenol requirement. The optimal conditions of initial pH and temperature of media for growth were 7.0~9.0 and $30~50^{\circ}C$, respectively. Rhodococcus sp. EL-43P could grow with phenol up to 1,000 ppm. Growth was inhibited by phenol at a concentration above 1,500 ppm. It was observed that Rhodococcus sp. EL-43P was able to degrade 90% of phenol (1,000 ppm) after 40 h in a culture. Phenol-induced cells of Rhodococcus sp. EL-43P degraded 95% of $5{\mu}M$ TCE in 6 h. Rhodococcus sp. EL-43P hardly degraded TCE above $100{\mu}M$.

  • PDF