• Title/Summary/Keyword: Phase-change optical media

검색결과 20건 처리시간 0.025초

컴퓨터 정보저장용 상변화형 광기록매체 (Phase-change optical media for computer data storage)

  • 김명룡
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제8권2호
    • /
    • pp.229-236
    • /
    • 1995
  • Multimedia has created a system environment that needs a combination of diverse peripherals, faster I/O, and easier configuration. The sheer volume of data one can expect with multimedia hardware and applications storage systems of higher capacity and faster data transfer rate. Unlike the magneto-optical(MO)disk technology which uses bias magnetic field in writing, both the reading and the writing in the phase change (PC) technology are performed only by laser light. In PC optical media, an active layer is reversibly converted between amorphous state and crystalline state by changing irradiation conditions of focused laser beam. Thus, as compared with MO disk, the PC disk has such great advantages that signals can be reproduced by change of reflectance of laser beams in the same manner as the compact disc. The reflectivity of a phase-change spot can be altered in a single pass under the head only through modulation of laser power. The principles and the current status of phase-change optical recording media combined with possible applications are discussed in the present article.

  • PDF

Influence of Sn/Bi doping on the phase change characteristics of $Ge_2Sb_2Te_5$

  • Park T.J.;Kang M.J.;Choi S.Y.
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.93-98
    • /
    • 2005
  • Rewritable optical disk is one of the essential data storage media in these days, which takes advantage of the different optical properties in the amorphous and crystalline states of phase change materials. As well known, data transfer rate is one of the most important parameter of the phase change optical disks, which is mostly limited by the crystallization speed of recording media. Therefore, we doped Sn/Bi to $Ge_2Sb_2Te_5$ alloy in order to improve the crystallization speed and investigated the dependence of phase change characteristics on Sn/Bi doping concentration. The Sn/Bi doped $Ge_2Sb_2Te_5$ thin film was deposited by RF magnetron co-sputtering system and phase change characteristics were investigated by X-ray diffraction (XRD), static tester, UV-visible spectrophotometer, electron probe microanalysis (EPMA), inductively coupled plasma mass spectrometer (ICP-MS) and atomic force microscopy (AFM). Optimum doping concentration of Bi and Sn were 5${\~}$6 at.$\%$ and the minimum time for crystallization was below than 20 ns. This improvement is correlated with the simple crystalline structure of Sn/Bi doped $Ge_2Sb_2Te_5$ and the reduced activation barrier arising from Sn/Bi doping. The results indicate that Sn/Bi might play an important role in the transformation kinetics of phase change materials..

  • PDF

Phase Transition Characteristics in $Ge_xSb_{100-x}$ Film for Optical Storage Media

  • Park Tae-jin;Kang Myung-jin;Choi Se-young
    • 정보저장시스템학회:학술대회논문집
    • /
    • 정보저장시스템학회 2005년도 추계학술대회 논문집
    • /
    • pp.124-127
    • /
    • 2005
  • Rewritable optical memory devices such as an CD-RW and DVD+RW are data storage media, which take advantage of the different optical properties in the amorphous and crystalline states of phase change materials. The switching property, structural transformation, transformation kinetics and chemical bindings of $Ge_xSb_{100-x}$($6{\le}x{\le}$34) were studied to investigate the feasibility of applying $Ge_xSb_{100-x}$ alloys in optical memory. The $Ge_xSb_{100-x}$ thin film was deposited by RF magnetron co-sputtering system and phase change characteristics were investigated by X-ray diffraction (XRD), static tester, inductively coupled plasma atomic emission spectrometer (ICP-AES) and atomic force microscopy (AEM). Optimum fiim composition of $Ge_xSb_{100-x}$ was studied and its minimum time fur laser induced crystallization and optical contrast fur phase transition was performed. These results might be correlated with the binding energies between Ge and Sb, and indicate that $Ge_xSb_{100-x}$ have an potential far optical memory applications.

  • PDF

Te 을 미세 도핑한 S $b_{85}Ge_{15}$ 상변화 기록 박막의 특성 (The Characteristics of Te-light doped S $b_{85}Ge_{15}$Thin Film as Phase Change Optical Recording Media)

  • 김종기;김홍석;이영종;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 춘계학술대회 논문집
    • /
    • pp.20-22
    • /
    • 1997
  • In ours study, we investigated the various properties in Te-light doped $Sb_{85}$G $e_{15}$ thin films such as the change of reflectance and transmittance according to phase change from amorphous to crystalline states In all films the transmittance was decreased, but the reflectance was increased by annealing. Particularly, the reflectance between as- deposited state and annealed state showed the largest change in the T $e_{0.5}$($Sb_{85}$G $e_{15}$ )$_{99.5}$ thin film at 780nm, which was about 40% in as-deposited state and about 70% in annealed state. Therefore, it might be considered that the T $e_{0.5}$($Sb_{85}$G $e_{15}$ )$_{99.5}$ thin film is recording medium showing to a good optical properties if it is used to optical recording of the phase change type. change type.ype.

  • PDF

PRAM용 GST계 상변화 박막의 하부막에 따른 특성 (Properties of GST Thin Films for PRAM with Bottom Electrode)

  • 장낙원;김홍승
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.205-206
    • /
    • 2005
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. Among the phase change materials, $Ge_2Sb_2Te_5$(GST) is very well known for its high optical contrast in the state of amorphous and crystalline. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the structural properties of GST thin films with bottom electrode were investigated for PRAM. The 100-nm thick GST films were deposited on TiN/Si and TiAlN/Si substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films, we performed x-ray diffraction (XRD) and atomic force microscopy (AFM).

  • PDF

하부전극에 따른 상변화 메모리 셀의 전기 및 발열 특성 (The Electrical and Thermal Properties of Phase Change Memory Cell with Bottom Electrode)

  • 장낙원;김홍승;이준기;김도형;마석범
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.103-104
    • /
    • 2006
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the reset current and temperature profile of PRAM cells with bottom electrode were calculated by the numerical method.

  • PDF

PRAM 용 GST계 상변화 박막의 조성에 따른 특성 (Properties of GST Thin Films for PRAM with Composition)

  • 장낙원
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.707-712
    • /
    • 2005
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change materials have been researched in the field of optical data storage media. Among the phase change materials. $Ge_2Sb_2Te_5$ is very well known for its high optical contrast in the state of amorphous and crystalline. However the characteristics required in solid state memory are quite different from optical ones. In this study. the structural Properties of GeSbTe thin films with composition were investigated for PRAM. The 100-nm thick $Ge_2Sb_2Te_5$ and $Sb_2Te_3$ films were deposited on $SiO_2/Si$ substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films. x-ray diffraction (XRD). atomic force microscopy (AFM), differential scanning calorimetry (DSC) and 4-point measurement analysis were performed. XRD and DSC analysis result of GST thin films indicated that the crystallization of $Se_2Sb_2Te_5$ films start at about $180^{\circ}C$ and $Sb_2Te_3$ films Start at about $125^{\circ}C$.

PRAM용 GST계 박막의 조성에 따른 특성 (Properties of GST Thin Films for PRAM with Composition)

  • 정명훈;장낙원;김홍승;류상욱;이남열;윤성민;박영삼;이승윤;유병곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.203-204
    • /
    • 2005
  • PRAM (Phase change Random Access Memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change material has been researched in the field of optical data storage media. Among the phase change materials $Ge_2Sb_2Te_5$(GST) is very well known for its high optical contrast in the state of amorphous and crystalline. However, the characteristics required in solid state memory are quite different from optical ones. In this study, the structural properties of GST thin films with composition were investigated for PRAM. The 100-nm thick GeTe and $Sb_2Te_3$ films were deposited on $SiO_2$/Si substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films, we performed x-ray diffraction (XRD) and atomic force microscopy (AFM).

  • PDF

광기록 매체의 새로운 지평을 여는 DVD기술 (DVD Technology : The Heart of Optical Data Storage Media)

  • 김명룡
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권3호
    • /
    • pp.289-294
    • /
    • 1997
  • 디지탈 비디오 디스크의 약어로 지칭되는 DVD는 현대 과학이 이루어낸 레이저 광에 의한 정보의 기록과 재생을 한층 승화시킨 차세대 package형 광 기록 매체이다. 앞으로 이 제품군은 기존에 분리되어 있던 가전과 컴퓨터의 응용분야를 이어주는 교량역할을 할 새로운 개념의 상품으로 기대된다. 본 고에서는 DVD의 기술적 배경 및 이의 구현을 위해 활용된 요소기술, 그리고 미래기술로의 흐름에 관해 소개고자 한다.

  • PDF

위상천이원리 와 PS-OCT시스템을 적용한 역산란광의 매질 깊이별 스톡스변수 추출 (Depth-resolved Stokes parameters of light backscattered from turbid media with polarization-sensitive optical coherence tomography system and successive phase-shifting algorithm)

  • Oh, Jung-Taek;Kim, Seung-Woo
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.286-287
    • /
    • 2003
  • Polarization-sensitive optical coherence tomography (PS-OCT) was developed to image highly scattering tissues with accounting for polarization effects in the sample. These polarization-sensitive images can provide additional information on the structure of the tissue because of a polarization state of the light is changed at its interaction with biological tissues. The scattering and birefringence are two phenomena, which change the polarization state of light passing through medium. (omitted)

  • PDF