• Title/Summary/Keyword: Phase shift full bridge converter

Search Result 130, Processing Time 0.026 seconds

Analysis of MOSFET Failure Modes in Bi-directional Phase-Shift Full-Bridge Converters

  • Oh, Chang-Yeol;Sung, Won-Yong;Kim, Yun-Sung;Lee, Byoung-Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1692-1699
    • /
    • 2015
  • This paper presents an analysis of the mechanism of failure modes in bi-directional phase-shift full-bridge converters, composed of MOSFET, based on the circuit operation and parasitic parameters of MOSFET. In addition, the relation between circuit operation and parameters is suggested through an experimental comparison. From this relation, the suitable ranges of parameters for stable performance are analyzed. The design criteria of the bi-directional phase-shift full-bridge converter are presented and evaluated from the experimental verification.

The Battery Charger System for Electric Bicycle using Photovoltaic Power (태양광 발전을 이용한 전기자전거용 배터리 충전장치)

  • Won, Dong-Jo;Lee, Joo-Hyuk;Kim, Jae-Hyung;Won, Chung-Yuen;Jung, Yong-Chae
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.53-56
    • /
    • 2008
  • In this paper, we propose the battery charging device for electric bicycle using photovoltaic power. DC voltage from the solar cells is low, it needs to be step-up by the power conversion device. The power conversion device applied to this paper is phase-shift full-bridge converter. This converter steps-up from 12${\sim}$22[Vdc] to 36[Vdc] for charging the battery of electric bicycle. Phase-shift full-bridge converter(PSFB) can obtain twice as much DC voltage compared with half-bridge converter, thus it has lower current stress less than half-bridge converter. It is simulated and tested the battery charging device using photovoltaic power.

  • PDF

Digital-To-Phase-Shift PWM Circuit for High Power ZVS FB DC/DC Converter (대용량 ZVS FB DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로)

  • 김은수;김태진;최해영;박순구;김윤호;이재학
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.618-621
    • /
    • 1999
  • With the advent of the high-speed microprocessor and DSP, the possibility of executing a control strategy in digital domain has become a reality. By the use of the DSP and microprocessor controller, many high power drive system may be enhanced resulting in the improved robustness to EMI, the ability to communicate the operating conditions and the ease of adjusting the control parameters. But, the digital controller using DSP or microprocessor is not applied in the high frequency switching power supplies, especially full bridge DC/DC converter. So, this paper presents the method and realization of designing a digital-to-phase shift PWM circuit for full digital controlled full bridge DC/DC converter with zero voltage switching. The operating principles, simulation and experimental results will be presented.

  • PDF

Design of Dual-channel Interleaved Phase-shift Full-bridge Converter

  • Che, Yanbo;Wang, Dianmeng;Liu, Xiaokun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1529-1536
    • /
    • 2017
  • A digital dual-channel interleaved phase-shift full-bridge converter is investigated in this paper, and its topology and principle are analyzed. To realize current sharing and stabilize the output voltage, a controller with current sharing loop and closed voltage loop is employed. In addition, current sharing will increase the output current fluctuation and a new digital interleaved driving technology is proposed to reduce the output current ripple. To verify the analysis, simulation and experiments are carried out, which shows the effectiveness of the proposed control strategies.

1.2KW PEM(Proton Exchange Membrane) System Full Bridge Phase Shift ZVS(Zero Volt Switching) DC-DC Converter Design and control (1.2KW 고분자 전해질 연료전지 시스템용 Full Bridge Phase Shift ZVS(Zero Volt Switching)을 적용한 DC-DC 컨버터의 설계 및 제어)

  • Seo, Jung-Wook;Park, Seung-Kyu;Ahn, Ho-Kyun;Kwak, Gun-Puyng
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1057-1058
    • /
    • 2006
  • In this paper, the proposed power supply is based on a modified version of the zero-voltage switching(ZVS) full-bridge phase-shift DC-DC converter, which incorporates commutation auxiliary inductors to provide ZVS for the entire load range as well as a commutation aid circuit to clamp the output diode voltage. The control strategy is based on two control loops operating in cascade mode. The complete operating principles and simulation results in presented.

  • PDF

A Study on Battery Chargers for the next generation high speed train using the Phase-shift Full-bridge DC/DC Converter (위상전이 풀-브리지 DC/DC 컨버터를 이용한 차세대 고속 전철용 Battery Charger에 관한 연구)

  • Cho, Han-Jin;Kim, Keun-Young;Lee, Sang-Seok;Kim, Tae-Hwan;Won, Chung-Yuen
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.384-387
    • /
    • 2009
  • There is an increasing demand for efficient high power/weight auxiliary power supplies for use on high speed traction application. Many new conversion techniques have been proposed to reduce the voltage and current stress of switching components, and the switching losses in the traditional pulse width modulation (PWM) converter. Especially, the phase shift full bridge zero voltage switching PWM techniques are thought must desirable for many applications because this topology permits all switching devices to operate under zero voltage switching(ZVS) by using circuit parasitic components such as leakage inductance of high frequency transformer and power device junction capacitance. The proposed topology is found to have higher efficiency than conventional soft-switching converter. Also it is easily applicable to phase shift full bridge converter by applying an energy recovery snubber consisted of fast recovery diodes and capacitors.

  • PDF

ZVS Phase Shift Full Bridge Converter Design with 2kW Output (2 kW 출력을 갖는 영전압 스위칭 위상 천이 풀 브리지 컨버터 설계)

  • Hwang, Kyu-Il;Kim, Il-Song
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.11
    • /
    • pp.523-530
    • /
    • 2018
  • It has been studied over the long time for the high efficiency and high power density of the power converter. It is possible to obtain higher power conversion efficiency and small volume by increasing switching frequency, however, the switching loss is also increased. The soft switching technique can overcome of the above deficiency. The design and analysis method for ZVS(Zero Voltage Switching) Phase Shifte Full bridge converter is presented in this paper. The power transfer depends on the phase difference between two legs of the power stage and the maximum power conversion efficiency is achieved by the optimum leakage inductance value. The waveform of the current and voltage of the operational mode is analysed and the corresponding switch status is plotted as on/off status. A ZVS full bridge converter for a communication rectifier with 2kW output power is implemented and its performance are verified through PSIM software simulation and experimental results.

A New Soft Switching Technique for Bi-directional Power Flow, Full-bridge DC-DC Converter (양방향 풀-브릿지 DC-DC 컨버터를 위한 새로운 소프트 스위칭 기법)

  • Song, Y.J.;Park, S.I.;Jeong, H.G.;Han, S.B.;Jung, B.M.
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.251-255
    • /
    • 2005
  • This paper proposes a new soft switching technique for a phase-shift controlled bi-directional DC-DC converter. The described converter employs a low profile high frequency transformer and two active full-bridge converters for bidirectional power flow capability. A new soft switching technique is proposed, which guarantees soft switching over wide range (no load to full load) without any additional circuit components. In the proposed switching scheme, the switch pairs in the diagonal position of the converter each are turned on/off simultaneously by the switching signals with a variable duty ratio depending on the phase shift amount, and the converter is operated without freewheeling interval.

  • PDF

Battery charging device using DMFC for an electric bicycle (DMFC를 사용한 전기자전거 배터리 충전장치)

  • Kim, Young-Ho;Ji, Young-Hyok;Kim, Jae-Hyung;Won, Chung-Yuen;Kim, Young-Real
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.255-258
    • /
    • 2008
  • In this paper, the battery charging device using DMFC(Direct Methanol Fuel Cell) for electric bicycle is proposed. In the proposed system, phase-shift full-bridge converter is used as a battery charger by boosting the 12V DMFC output voltage up to 36V. By using the phase-shift technique, the ringing of the transformer is reduced and the efficiency of the converter can be improved. The operation modes of proposed phase-shift full-bridge converter is analyzed and verified by the simulation and the experimental results.

  • PDF

High-Efficiency Full-Bridge DC-DC Converter with Current-Doubler Rectifier with Asymmetric Pulse-Width Modulation (비대칭 펄스 폭 변조 방식의 배전류 정류기 회로를 적용한 고효율 풀-브릿지 DC-DC 컨버터)

  • Yang, Min-Kwon;Choi, Woo-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.280-289
    • /
    • 2015
  • A high-efficiency full-bridge DC-DC converter with a current-doubler rectifier and an asymmetric pulse-width modulation is proposed. Through the asymmetric pulse-width modulation, the proposed converter achieves zero-voltage switching of power switches without the circulating currents. The proposed converter reduces the output current ripple through the current-doubler rectifier. A control strategy is suggested for the proposed converter to charge battery banks. A constant current and constant voltage charging is performed. The proposed converter achieved a higher efficiency compared with the conventional full-bridge DC-DC converter with a phase-shift modulation. The performance of the proposed converter is evaluated by the experimental results for a 1.0 kW prototype circuit.