• Title/Summary/Keyword: Phase leg voltage redundancy

Search Result 3, Processing Time 0.018 seconds

The Carrier-based SVPWM method for voltage balance of flying capacitor multilevel inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시티 잔압 균형을 위한 캐리어 비교방식의 펄스 폭 변조 기법)

  • 강대욱
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.313-316
    • /
    • 2000
  • This paper proposes a new solution by carrier-based SVPWM method to solve the most serious problem of Flying Capacitor Multi-level Inverter that is unbalance of capacitor voltages The voltage unbalance is occurred by the difference of each capacitor's charging and discharging time applied to Flying Capacitor Multi-level Inverter. It controls the variation of capacitor voltages into the mean'0' during some period by means of new carriers using the leg voltage redundancy in the Inverter. The solution can be easily expanded to the multi-level. Also this method can make the switching loss and conduction loss of device equal by the use of leg voltage redundancy. First the unbalance of capacitor voltage is analyzed and the conventional theory of self-balance using phase-shifted carrier is reviewed. And then the new method that is suitable to the Flying Capacitor Inverter is explained. The simulation results would be shown to verify the proposed method

  • PDF

A Carrier-Rotation Strategy for Voltage Balancing of Flying Capacitors in Flying Capacitor Multi-level Inverter (플라잉 커패시터 멀티-레벨 인버터의 플라잉 커패시터 전압 균형을 위한 캐리어 로테이션 기법)

  • 이원교;김태진;강대욱;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.469-477
    • /
    • 2003
  • This paper proposes a Carrier-Rotation (CR) PWM technique that is a new solution for the voltage unbalancing problem of flying capacitors in the Flying Capacitor Multi-level Inverter (FCMI). The proposed technique equalizes the utilization of phase leg voltage redundancies corresponding to the charging and the discharging state of individual flying capacitors during each switching period of all the switches. Therefore, the charging and the discharging quantity of flying capacitors are equal, which makes the average variation of flying capacitor voltages become zero and keeps their voltage stable during minimum specified period. It also has the reduced harmonic contents of output voltage and the same switch utilization since all the carrier signals are in phase and the switching frequency of each switch is identical. The proposed technique is analyzed precisely in flying capacitor 3-level inverter and then it has expanded to the FCMI (N-level, N>3). Experimental results on the laboratory prototype flying capacitor 3-level inverter confirm the validity of the proposed technique.

The Carrier-based PWM Method for Voltage Balance of Flying Capacitor Multi-bevel Inverter (플라잉 커패시터 멀티-레벨 인버터의 커패시터 전압 균형을 위한 캐리어 비교방식의 펄스폭변조기법)

  • 이상길;강대욱;이요한;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.65-73
    • /
    • 2002
  • This paper proposes a new carrier-based PWM method to solve the most serious problem of flying capacitor multi-level inverter that is the unbalance of capacitor voltages. The voltage unbalance occurs due to the difference of each capacitor's charging and discharging time applied to Flying Capacitor Inverter. New solution controls the variation of capacitor voltages into the mean '0'during some period by means of new carriers using the leg voltage redundancy in the flying capacitor inverter. The solution can be easily expanded to the multi-level inverter. The leg voltage redundancy in the new method makes the switching loss of device equals to the conduction loss of device. This paper will examine the unbalance of capacitor voltage and the conventional theory of self-balance using Phase-shifted carrier. And then the new method that is suitable to the flying capacitor inverter will be explained.