• Title/Summary/Keyword: Phase evolution

Search Result 645, Processing Time 0.026 seconds

Controlling the initial conditions of precursor powders and its effects on the phase evolution and $J_c$ properties of Bi-2223/Ag tapes

  • Jiang, C.H;Yoo, J.M;Kim, H.D;Kang, S.C;Chung, H.S;Wang, Y.Z;Ko, J.W;Qiao, G.W
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.91-94
    • /
    • 2001
  • By varying fabricating process, precursor powders with different initial conditions were prepared. Subsequently, Bi-2223/Ag tapes were made through these powders. The effects of precursor powders on the phase evolution and Jr properties of Bi-2223/Ag tapes were studied along with several thermomechanical cycles. Our results showed that the initial conditions of precursor powders could strongly influence the phase formation rate and $J_{c}$ value in final tapes. The factors of precursor powders that influence the phase formation and $J_{c}$ of Bi-2223/Ag tapes must be studied and optimized in combination.ion.

  • PDF

Microstructural Evolution of $BaTiO_3$ Ceramics during the Cubin-Hexagonal Phase Transformation ($BaTiO_3$ 요업체에서 Cubic-Hexagonal 상전이에 따른 미세조직 변화)

  • 이태헌;이정아
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.4
    • /
    • pp.448-454
    • /
    • 1996
  • The microstructural evolution of BaTiO3 ceramics during cubic-hexagonal phase transformation was investiga-ted. In the case of phase transformation from cubic to hexagonal BaTiO3 the hexagonal phase nucleated at the surface region of specimen. On the other hand in the case of that from hexgonal phase to cubic, cubic phase was initiated at the center region of specimen. And fast grain growth and irregular grain boundary shape could be also observed during these transformation processes. Besides low densified hexagonal BaTiO3 specimen was made with low forming pressure. The phase transformation of these specimens toward cubic phase was relatively retarded comparing with dense hexagonal BaTiO3 specimens. was made low forming pressure.. The phase transformation of these specimens toward cubic phase was relatively retarded comparing with dense hexagonal BaTiO3 specimens. These results were explained that hexagonal BaTiO3 had lowder surface energy than cubic phase.

  • PDF

EXISTENCE OF SOLUTIONS FOR DOUBLE PERTURBED IMPULSIVE NEUTRAL FUNCTIONAL EVOLUTION EQUATIONS

  • Vijayakumar, V.;Sivasankaran, S.;Arjunan, M. Mallika
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.4
    • /
    • pp.253-265
    • /
    • 2011
  • In this paper, we study the existence of mild solutions for double perturbed impulsive neutral functional evolution equations with infinite delay in Banach spaces. The existence of mild solutions to such equations is obtained by using the theory of the Hausdorff measure of noncompactness and Darbo fixed point theorem, without the compactness assumption on associated evolution system. An example is provided to illustrate the theory.

Prediction of the Plastic Strain Ratio Evolution of a Dual-phase Steel (3차원 미세조직에 기반한 잔류응력 하의 이상 조직강의 소성변형률비 예측)

  • Ha, J.;Lee, J.W.;Lee, M. G.;Barlat, F.;Kim, J. H.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.395-399
    • /
    • 2015
  • A microstructure-based finite element simulation was conducted to predict the plastic strain ratio (R-value) of a dual-phase (DP) steel. The representative volume elements (RVEs) concept was adopted for the image-based FE modeling and a 3D model was constructed using sequential 2D images. Each phase was considered with the von-Mises yield criterion and the Swift model. The Swift parameters were defined by the empirical equations based on the chemical composition. The developed model was applied to analyze the effect of residual stress on the R-value and stress distribution. In order to consider the residual stress development after cold rolling, 10 % compression was applied in the thickness direction and unloaded before the tensile stress was applied in the rolling direction. The results showed a reasonable prediction for the R-value evolution: a sharp increase at small strains was well described and a transition followed in the downward direction. The R-value evolution was analyzed using the stress distribution change on the π-plane

Simulation of Texture Evolution and Anisotropy Behavior in Dual Phase Steels during Deep Drawing Process (DP강의 디프드로잉 시 집합조직 발달과 이방성 거동 시뮬레이션)

  • Song, Young-Sik;Kim, Dae-Wan;Yang, Hoe-Seok;Han, Sung-Ho;Chin, Kwang-Gun;Choi, Shi-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.274-282
    • /
    • 2009
  • To investigate the evolution of deformation texture in dual phase (DP) steels during deep-drawing deformation, deep-drawing experiments were performed. Microtexture measurements were conducted using electron backscattered diffraction (EBSD) to analyze texture evolution. A rate-sensitive polycrystal model was used to predict texture evolution during deep-drawing deformation. In order to evaluate the strain path during deep-drawing deformation, a steady state was assumed in the flange part of a deep-drawn cup. A ratesensitive polycrystal model successfully predicted the texture evolution in DP steels during deep-drawing deformation. The final stable orientations were found to be strongly dependent on the initial location in the blank. Texture analysis revealed that the deep drawability of DP steels decreases as the true strain in the radial direction of the deep-drawn cup increases during deep-drawing deformation.

COMPARISON OF NUMERICAL METHODS FOR TERNARY FLUID FLOWS: IMMERSED BOUNDARY, LEVEL-SET, AND PHASE-FIELD METHODS

  • LEE, SEUNGGYU;JEONG, DARAE;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.83-106
    • /
    • 2016
  • This paper reviews and compares three different methods for modeling incompressible and immiscible ternary fluid flows: the immersed boundary, level set, and phase-field methods. The immersed boundary method represents the moving interface by tracking the Lagrangian particles. In the level set method, an interface is defined implicitly by using the signed distance function, and its evolution is governed by a transport equation. In the phase-field method, the advective Cahn-Hilliard equation is used as the evolution equation, and its order parameter also implicitly defines an interface. Each method has its merits and demerits. We perform the several simulations under different conditions to examine the merits and demerits of each method. Based on the results, we determine the most suitable method depending on the specific modeling needs of different situations.

Phase-field simulation of radiation-induced bubble evolution in recrystallized U-Mo alloy

  • Jiang, Yanbo;Xin, Yong;Liu, Wenbo;Sun, Zhipeng;Chen, Ping;Sun, Dan;Zhou, Mingyang;Liu, Xiao;Yun, Di
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.226-233
    • /
    • 2022
  • In the present work, a phase-field model was developed to investigate the influence of recrystallization on bubble evolution during irradiation. Considering the interaction between bubbles and grain boundary (GB), a set of modified Cahn-Hilliard and Allen-Cahn equations, with field variables and order parameters evolving in space and time, was used in this model. Both the kinetics of recrystallization characterized in experiments and point defects generated during cascade were incorporated in the model. The bubble evolution in recrystallized polycrystalline of U-Mo alloy was also investigated. The simulation results showed that GB with a large area fraction generated by recrystallization accelerates the formation and growth of bubbles. With the formation of new grains, gas atoms are swept and collected by GBs. The simulation results of bubble size and distribution are consistent with the experimental results.

Real-time Evolution of Poly (3-hexylthiophene) type-II Phase in P3HT:PCBM Blend thin films

  • Lee, Hyeon-Hwi;Lee, Si-U;Geum, Hui-Seong;Kim, Han-Seong;Kim, Je-Han;Lee, Dong-Ryeol;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.168.2-168.2
    • /
    • 2015
  • We observed the temperature-dependent evolution and behavior of P3HT type-II phase during a real time annealing process from a cryo-cooled low temperature in the absence and presence of an Al electrode. A poly (3-hexylthiophene) (P3HT) Type-II phase in the P3HT:PCBM films started to form near at $-10^{\circ}C$, regardless of Al layer presence. In the absence of an Al layer, type-II phase was extinct at $30^{\circ}C$. However, the extinction temperature was extended to $50^{\circ}C$ in the presence of the Al layer. Simultaneously, combined with the type-II phase, a 1:3 ordered P3HT type-II (1/3,0,0) super-lattice peak evolved. These type-II domains tended to be formed near the Al electrode layer with higher aligned status than host P3HT crystals.

  • PDF

Recent Development in Computational Welding Mechanics (전산용접역학의 최근 동향)

  • Im, Se-Young;Han, You-Sung;Lee, Kye-Hyoung;Han, Myoung-Soo;Choi, Kang-Hyouk
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.87-91
    • /
    • 2009
  • Welding is one of the most important joining processes and the effect of welding residual stresses in the structure has a great deal of influence on its quality. In this paper, recent development in computational welding mechanics, particularly calculation of welding residual stresses, is introduced. The hypoelastic formulation of finite element analysis for thermoelastic-plastic deformation is applied to welding processes to find residual deformations and stresses. Leblond's phase evolution equation coupled with the energy equation is employed to calculate the phase volume fraction; this plays an important role as a kinetics parameter affecting phase fraction effects in the mechanical constitutive equation of welded materials. Furthermore, transformation plasticity is taken into account for an accurate evaluation of stress. The influence of the phase transformation and the transformation plasticity on residual stress is investigated by means of numerical analyses using metallurgical parameters in Leblond's phase evolution equation that are adjusted with respect to various cooling rates in a CCT-diagram. Coding implementation is conducted by way of the ABAQUS user subroutines, UMAT.

  • PDF

Phase stability and Sintered Properties of 1.5mol% Yttria-stabilized Zirconia Ceramics Fabricated by Low Temperature Sintering (저온 열처리로 제작된 1.5 mol% 이트리아 안정화 지르코니아 세라믹스의 상 안정성 및 소결물성)

  • Kyung Tae Kim;Han Cheol Choe;Jeong Sik Park;Jong Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Phase stability of tetragonal crystals in yttria-stabilized zirconia ceramics is dependent on the content of yttria and the heat-treatment condition, related with mechanical properties. In this study, we fabricated the 1.5 mol% yttria-stabilized zirconia (1.5Y-YSZ) ceramics by cold isostatic pressing (CIP) and post-sintering at temperature range of 1200 to 1350℃ for 2 hours and investigated the sintered properties and microstructural evolution. Sintered and microstructural parameters, i.e, apparent density, grain size and phase composition of 1.5Y-YSZ ceramics were mainly dependent on the sintering temperature. Maximum sintered density of 99.4 % and average grain size of 200-300 nm could be obtained from the heat-treatment condition above sintering temperature at 1300℃ for 2 hours, possessing the superior mechanical hardness with 1200 Hv. However, phase stability of tetragonal grains in 1.5 YSZ ceramics is very low, inducing the phase transformation to monoclinic crystals on specimen surface during cooling after heat-treatment.