• Title/Summary/Keyword: Phase correction

Search Result 560, Processing Time 0.027 seconds

The Uncertainty of Extreme Rainfall in the Near Future and its Frequency Analysis over the Korean Peninsula using CMIP5 GCMs (CMIP5 GCMs의 근 미래 한반도 극치강수 불확실성 전망 및 빈도분석)

  • Yoon, Sun-kwon;Cho, Jaepil
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.817-830
    • /
    • 2015
  • This study performed prediction of extreme rainfall uncertainty and its frequency analysis based on climate change scenarios by Coupled Model Intercomparison Project Phase 5 (CMIP5) for the selected nine-General Circulation Models (GCMs) in the near future (2011-2040) over the Korean Peninsula (KP). We analysed uncertainty of scenarios by multiple model ensemble (MME) technique using non-parametric quantile mapping method and bias correction method in the basin scale of the KP. During the near future, the extreme rainfall shows a significant gradually increasing tendency with the annual variability and uncertainty of extreme ainfall in the RCP4.5, and RCP8.5 scenarios. In addition to the probability rainfall frequency (such as 50 and 100-year return periods) has increased by 4.2% to 10.9% during the near future in 2040. Therefore, in the longer-term water resources master plan, based on the various climate change scenarios (such as CMIP5 GCMs) and its uncertainty can be considered for utilizing of the support tool for decision-makers in water-related disasters management.

Three-phase current-fed soft-switching type resonant DC-link snubber converter with switched capacitor (스위치 캐패시터형 공진 DC-링크를 사용한 3상 전류형 소프트 스위칭 PWM 컨버터)

  • Kim, Ju-Yong;Suh, Ki-Young;Lee, Hyun-Woo;Mun, Sang-Pil;Kim, Young-Mun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.387-390
    • /
    • 2005
  • A This paper presents a novel three-phase current-fed Pulse Width Modulation converter with switched- capacitor type resonant DC link commutation circuit operating PWM pattern strategy under a design consideration of low-pass filter, which can operate on the basis of the principle of zero current soft-switching commutation. In the first place, the steady-state operating principle of this converter with a new resonant DC link snubber circuit is described in connection with the equivalent operation circuit, together with the practical design procedure of the switched-capacitor type resonant DC link circuit is discussed from a theoretical viewpoint on the basis of a design example for high-power applications. The actively delayed time correction method to compensate distorted currents due to a relatively long resonant commutation time is newly implemented in the open loop control scheme so as to acquire the new optimum PWM pattern. Finally, the experiment or set-up in laboratory system or this converter is concretely demonstrated herein to confirm a zero current soft-switching commutation of this converter. The comparative evaluations between current-fed hard switching PWM and soft-switching PWM converters are carried out from a viewpoint of their PWM converter characteristics.

  • PDF

Uncertainty Requirement Analysis for the Orbit, Attitude, and Burn Performance of the 1st Lunar Orbit Insertion Maneuver

  • Song, Young-Joo;Bae, Jonghee;Kim, Young-Rok;Kim, Bang-Yeop
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.323-333
    • /
    • 2016
  • In this study, the uncertainty requirements for orbit, attitude, and burn performance were estimated and analyzed for the execution of the $1^{st}$ lunar orbit insertion (LOI) maneuver of the Korea Pathfinder Lunar Orbiter (KPLO) mission. During the early design phase of the system, associate analysis is an essential design factor as the $1^{st}$ LOI maneuver is the largest burn that utilizes the onboard propulsion system; the success of the lunar capture is directly affected by the performance achieved. For the analysis, the spacecraft is assumed to have already approached the periselene with a hyperbolic arrival trajectory around the moon. In addition, diverse arrival conditions and mission constraints were considered, such as varying periselene approach velocity, altitude, and orbital period of the capture orbit after execution of the $1^{st}$ LOI maneuver. The current analysis assumed an impulsive LOI maneuver, and two-body equations of motion were adapted to simplify the problem for a preliminary analysis. Monte Carlo simulations were performed for the statistical analysis to analyze diverse uncertainties that might arise at the moment when the maneuver is executed. As a result, three major requirements were analyzed and estimated for the early design phase. First, the minimum requirements were estimated for the burn performance to be captured around the moon. Second, the requirements for orbit, attitude, and maneuver burn performances were simultaneously estimated and analyzed to maintain the $1^{st}$ elliptical orbit achieved around the moon within the specified orbital period. Finally, the dispersion requirements on the B-plane aiming at target points to meet the target insertion goal were analyzed and can be utilized as reference target guidelines for a mid-course correction (MCC) maneuver during the transfer. More detailed system requirements for the KPLO mission, particularly for the spacecraft bus itself and for the flight dynamics subsystem at the ground control center, are expected to be prepared and established based on the current results, including a contingency trajectory design plan.

Hybrid RANS and Potential Based Numerical Simulation for Self-Propulsion Performances of the Practical Container Ship

  • Kim, Jin;Kim, Kwang-Soo;Kim, Gun-Do;Park, Il-Ryong;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.4
    • /
    • pp.1-11
    • /
    • 2006
  • The finite volume based multi-block RANS code, WAVIS developed at MOERI is applied to the numerical self-propulsion test. WAVIS uses the cell-centered finite volume method for discretization of the governing equations. The realizable $k-{\epsilon}$ turbulence model with a wall function is employed for the turbulence closure. The free surface is captured with the two-phase level set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. The propeller forces are obtained using an unsteady lifting surface method based on potential flow theory. The numerical procedure followed the self-propulsion model experiment based on the 1978 ITTC performance prediction method. The self-propulsion point is obtained iteratively through balancing the propeller thrust, the ship hull resistance and towing force that is correction for Reynolds number difference between the model and full scale. The unsteady lifting surface code is also iterated until the propeller induced velocity is converged in order to obtain the propeller force. The self-propulsion characteristics such as thrust deduction, wake fraction, propeller efficiency, and hull efficiency are compared with the experimental data of the practical container ship. The present paper shows that hybrid RANS and potential flow based numerical method is promising to predict the self-propulsion parameters of practical ships as a useful tool for the hull form and propeller design.

A Study on the Evaporative Heat Transfer in Microtubes (마이크로관 내 증발열전달에 관한 연구)

  • Hwang, Yun-Wook;Kim, Ju-Hyok;Kim, Min-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1113-1122
    • /
    • 2005
  • The experimental heat transfer coefficients have been measured for two-phase convective boiling in two circular microtubes with inner diameters of $430{\mu}m\;and\;792{\mu}m$. While the heat transfer was greatly affected by the heat flux in the low quality region, the mass flux played a role in the high quality region. The smaller microtube had greater heat transfer coefficients. When the heat flux is varied from $20kW/m^2\;to\;30kW/m^2\;at\;G=240kg/m^2s$, the difference between the average heat transfer coefficients of the test tube $A(D_i=430{\mu}m)$ and the test tube $B(D_i=792{\mu}m)$ changes from $32.5\%\;to\;52.1\%$. At $G=370kg/m2^s$, the difference between the average heat transfer coefficients changes from $47.0\%\;to\;53.8\%$. A new correlation for the evaporative heat transfer coefficients in microtubes was developed by considering the following factors; the laminar flow heat transfer coefficient of liquid-phase flow, the enhancement factor of the convective heat transfer, and the nucleate boiling correction factor. The correlation developed in this study predicts the experimental heat transfer coefficients within an absolute average deviation of $8.4\%$.

Performance Improvement in Single-Phase Electric Spring Control

  • Wang, Qingsong;Zuo, Wujian;Cheng, Ming;Deng, Fujin;Buja, Giuseppe
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.784-793
    • /
    • 2019
  • Two objectives can be pursued simultaneously with the ${\delta}$ control of a single-phase electric spring (ES). These objectives are the stabilization of the voltage across the critical load (CL) of a power system, and the achievement of a specific functionality similar to the pure compensation of reactive power or the correction of the power factor. However, existing control systems implementing the ${\delta}$ control do not cope with non-ideal operating conditions, such as line voltage distortions, and exhibit a somewhat sluggish regulation of the CL voltage. In an effort to improve both the steady-state and transient performances of an ES power system, this paper proposes implementing the ${\delta}$ control by means of a control system built up on the repetitive control and assisted by state feedback with pole assignment. This paper starts by analyzing the dynamics of an ES power system in terms of its poles and zeros. After that, a reduced second-order model of the dynamics is formulated to avoid a notch filter in the pole assignment. A repetitive control for an ES power system is then designed to meet the two above mentioned objectives. Experimental tests carried out on a laboratory setup demonstrate the effectiveness of the proposed control system in significantly improving the ES power system performance, while reaching the two objectives. In particular, the tests outline the large mitigation of harmonics in the CL voltage under line voltage distortions and its fast stabilization action.

Effect of micro-osteoperforations on external apical root resorption: A randomized controlled trial

  • Shahrin, Azaitun Akma;Ghani, Sarah Haniza Abdul;Norman, Noraina Hafizan
    • The korean journal of orthodontics
    • /
    • v.51 no.2
    • /
    • pp.86-94
    • /
    • 2021
  • Objective: This study aimed to investigate the effect of micro-osteoperforations (MOPs) on external apical root resorption (EARR) during the initial orthodontic alignment phase of maxillary anterior crowding. Methods: Thirty patients (25 females, 5 males; mean age, 22.66 ± 3.27 years) who presented with moderate crowding of the upper labial segment and underwent extraction-based fixed appliance treatment were recruited. They were randomly allocated to receive adjunctive therapy with MOPs (n = 15) or treatment with fixed appliances only (control group; n = 15). EARR was measured from long-cone periapical radiographs taken at the start and the sixth month of treatment. A correction factor for the enlargement difference was used to calculate EARR. Data were analyzed with descriptive statistics and repeated-measures analysis of variance. Results: The mean root lengths of 168 teeth were measured and showed no statistically significant difference (p > 0.05) after six months of fixed appliance treatment in the MOP (mean difference [MD] = 0.13 mm; 95% confidence interval [CI] = -0.10-0.35) and control group (MD = 0.14 mm; 95% CI = -0.10-0.37). Most of the roots in the MOP and control groups (42.86% and 52.38%, respectively) showed only mild resorption. Less than 8% of the roots in both groups (7.14% in the MOP group and 4.76% in the control group) showed moderate resorption. Conclusions: Acceleration of orthodontic tooth movement with adjunctive MOPs therapy during the alignment phase does not exacerbate EARR in patients with moderate crowding of the upper labial segment in comparison with controls.

Geodetic Survey Campaigns and Maintenance Plan for KASS Reference Station Antenna Coordinates

  • Hwanho, Jeong;Hyunjin, Jang;Youngsun, Yun;ByungSeok, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.83-89
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) system is a Satellite Based Augmentation System (SBAS) under development to provide APV-I SBAS service in the Republic of Korea. The KASS ground segment generates correction and integrity information for GPS measurements of KASS users using the accurate positions of KASS Reference Station (KRS) antenna phase centers. For this reason, the accuracy of KRS reference points through geodetic survey campaigns is one of the important factors for providing the KASS service in compliance with the required navigation performance. In order to obtain accurate positions, two geodetic survey campaigns were performed at several reference points, such as Mark, Center of Mast at Ground Level (CMGL), and Center of Hole in Top Plate (CHTP), of each KRS site using three different survey methods, the Virtual Reference Station (VRS), Flächen Korrektur Parameter (FKP), and raw data post-processing methods. By comparing and analyzing the results, the computed coordinates of the reference points were verified and Antenna Phase Center (APC) positions were calculated using KRS Antenna Reference Point (ARP) data, and the first KASS Site Acceptance Test (SAT#1) was performed successfully using the verified APC coordinates. After the first site survey activities, the KASS operators should maintain the coordinates with the required performance such that the overall KASS navigation performance commitment is guaranteed during the lifetime of 15 years. Therefore, the maintenance plan for the KRS antenna coordinates should be developed before the commissioning of KASS operation planned after 2023. Therefore, this paper presents a geodetic survey method selected for the maintenance activities and provides the rationale for using this method.

Methodology of Automatic Editing for Academic Writing Using Bidirectional RNN and Academic Dictionary (양방향 RNN과 학술용어사전을 이용한 영문학술문서 교정 방법론)

  • Roh, Younghoon;Chang, Tai-Woo;Won, Jongwun
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.175-192
    • /
    • 2022
  • Artificial intelligence-based natural language processing technology is playing an important role in helping users write English-language documents. For academic documents in particular, the English proofreading services should reflect the academic characteristics using formal style and technical terms. But the services usually does not because they are based on general English sentences. In addition, since existing studies are mainly for improving the grammatical completeness, there is a limit of fluency improvement. This study proposes an automatic academic English editing methodology to deliver the clear meaning of sentences based on the use of technical terms. The proposed methodology consists of two phases: misspell correction and fluency improvement. In the first phase, appropriate corrective words are provided according to the input typo and contexts. In the second phase, the fluency of the sentence is improved based on the automatic post-editing model of the bidirectional recurrent neural network that can learn from the pair of the original sentence and the edited sentence. Experiments were performed with actual English editing data, and the superiority of the proposed methodology was verified.

Measurement of Reference Phase Offset for the Loran-C Transmitting Signal of Pohang (포항 로란-C 송신 신호의 기준위상 오프셋 측정)

  • Lee, Chang-Bok;Won, Sung-Ho;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong;Yang, Sung-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.36 no.6
    • /
    • pp.475-480
    • /
    • 2012
  • In order to establish eLoran (enhanced Long Range Navigation) system, it needs the advancement of receiver, transmitter, data channel addition for Loran information, differential Loran sites for compensating Loran-c signal and ASFs (Additional Secondary Factors) database, etc. In addition, the precise synchronization of transmitting station to the UTC (Coordinated Universal Time) is essential if Loran delivers the high absolute accuracy of navigation demanded for maritime harbor entrance. For better timing synchronization to the UTC among transmitting stations, it is necessary to measure and monitor the transmission delay of the station, and the correction information of the transmitting station should be provided to the user's receivers. In this paper we presented the measurement method of absolute delay of Pohang Loran transmitting station and developed a time delay measurement system and a phase monitoring system for Loran station. We achieved -2.23 us as a result of the absolute phase delay of Pohang station and the drift of Loran pulse of the station was measured about 0.3 us for a month period. Therefore it is necessary to measure the delay offset of transmitting station and to compensate the drift of the Loran signal for the high accuracy application of PNT (Positioning, Navigation and Timing).