• Title/Summary/Keyword: Phase composition

Search Result 2,035, Processing Time 0.037 seconds

Fabrication and Permeation Properties of Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ Membranes for Oxygen Separation (산소분리를 위한 $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ 관형 분리막 제조 및 투과 특성)

  • Kim, Jong-Pyo;Son, Sou-Hwan;Park, Jung-Hoon;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.804-809
    • /
    • 2011
  • Tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes were prepared by extrusion. TGA results of green body membrane after extrusion showed three successive weight losses due to decomposition of organic additives and carbonate. Drying shrinkage rate of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membranes was no change after 68 h and higher in the membrane with large outer diameter. XRD and SEM results showed the sintered membranes were the single phase structure and dense. The stoichiometric molar ratio agreed well with composition ratio calculated by EDS results for $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane. Radial crushing strength of tubular $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-${\delta}$}$ membrane with 0.95 mm thickness was 5.7 kgf/$mm^2$ and the oxygen permeation rate of same membrane was 146.85 mL/min ($Jo_2$=2.33 mL/$min{\cdot}cm^2$) at $950^{\circ}C$. Therefore, it was known that use of vacuum pump was more effective than that of sweep gas to obtain higher oxygen permeation flux.

Studies of Solid-Liquid Phase Equilibria for Mixtures of N-vinyl-2-pyrrolidone+2-pyrrolidone and Growth Rate of N-vinyl-2-pyrrolidone Crystal Using Melt Crystallization (N-vinyl-2-pyrrolidone과 2-pyrrolidone 혼합물의 고-액 상평형 및 용융결정화를 이용한 N-vinyl-2-pyrrolidone의 결정성장속도 연구)

  • Kim, Sun Hyung;Seo, Myoung Do;Tak, Moon Seon;Kim, Woo Sik;Yang, Dae Ryuk;Kang, Jeong Won
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.587-590
    • /
    • 2013
  • Solid-liquid equilibria for mixtures composed of n-vinyl-2-pyrrolidone (NVP) and 2-pyrrolidone were measured as a basic study for the melt crystallization process to remove 2-pyrrolidone as impurity included in NVP. A differential scanning calorimeter (DSC) and a crystallizer were used and the experimental results obtained from two methods were similar. The mixture showed a eutectic system which has a single composition at the minimum melting temperature. Calculation results from simple thermodynamic equations were found in general agreements with present data. To determine the growth rate of NVP crystal which is important for the design of crystallization process, thicknesses of the crystal were measured with the time using a layer melt crystallizer. The growth rates increased as cooling temperatures decreased. Heat transfer coefficient correlated from present data was found to successfully describe the crystal growth behavior.

Anaerobic Digestion Efficiency of Remainder from Bacterial Cellulose Production Process using Food Wastes (음식 폐기물을 이용한 박테리아 셀룰로오스 생산 공정 잔류물의 혐기성 소화효율)

  • Jin, Sheng-De;Kim, Seong-Jun
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • This study was performed to examine the availability of anaerobic digestion of the remainders caused by bacterial cellulose production process using food wastes. They maybe to be considered as others second pollution sources. Thus, this study was targeted to minimize content of organic material and to obtain more energy in those remnants using two-phase UASB reactor. The working volume of first hydrolysis fermentor was 35 L (total 55 L) and the second methane fermentor was 40 L (total 50 L). The organic loading rate of hydrolysis fermentor was 3 g-VS/L${\cdot}$day and 25,000 ppm of $COD_{cr}$ for methane fermentor. The hydraulic retention time was 18 days for hydrolysis reactor and 33 days for methane reactor. The hydrolysis reactor and methane reactor were performed at 35, 40$^{\circ}C$ respectively. For the efficient stable performance, the composition of organic wastes at each stage was as follow; Food waste with bacterial culture remnants (1 : 1), bacterial cellulose remnants, bacterial cellulose culture remnants with food wastes saccharified solids (1 : 1). When the anaerobic digestion was performed stably at each stage, the COD removal efficiency was 88, 90, 91 % respectively. At this time, methane production rate was 0.26, 0.34, $0.32m^3\;CH_4/kg-COD_{remove}$. As well as the values of anaerobic digestion at third stage were more higher than values of anaerobic digestion using food wastes. It is clearly to say that the food wastes zero-emission system constructed in our lab is more efficient way to treat and reclaim food wastes.

Effect of Manganese Content on the Magnetic Susceptibility of Ferrous-Manganese Alloys: Correlation between Microstructure on X-Ray Diffraction and Size of the Low-Intensity Area on MRI

  • Youn, Sung Won;Kim, Moon Jung;Yi, Seounghoon;Ahn, Hyun Jin;Park, Kwan Kyu;Lee, Jongmin;Lee, Young-Cheol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.2
    • /
    • pp.76-87
    • /
    • 2015
  • Purpose: There is an ongoing search for a stent material that produces a reduced susceptibility artifact. This study evaluated the effect of manganese (Mn) content on the MRI susceptibility artifact of ferrous-manganese (Fe-Mn) alloys, and investigated the correlation between MRI findings and measurements of Fe-Mn microstructure on X-ray diffraction (XRD). Materials and Methods: Fe-Mn binary alloys were prepared with Mn contents varying from 10% to 35% by weight (i.e., 10%, 15%, 20%, 25%, 30%, and 35%; designated as Fe-10Mn, Fe-15Mn, Fe-20Mn, Fe-25Mn, Fe-30Mn, and Fe-35Mn, respectively), and their microstructure was evaluated using XRD. Three-dimensional spoiled gradient echo sequences of cylindrical specimens were obtained in parallel and perpendicular to the static magnetic field (B0). In addition, T1-weighted spin echo, T2-weighted fast spin echo, and $T2^*$weighted gradient echo images were obtained. The size of the low-intensity area on MRI was measured for each of the Fe-Mn binary alloys prepared. Results: Three phases of ${\alpha}^{\prime}$-martensite, ${\gamma}$-austenite, and ${\varepsilon}$-martensite were seen on XRD, and their composition changed from ${\alpha}^{\prime}$-martensite to ${\gamma}$-austenite and/or ${\varepsilon}$-martensite, with increasing Mn content. The Fe-10Mn and Fe-15Mn specimens comprised ${\alpha}^{\prime}$-martensite, the Fe-20Mn and Fe-25Mn specimens comprised ${\gamma}+{\varepsilon}$ phases, and the Fe-30Mn and Fe-35Mn specimens exhibited a single ${\gamma}$ phase. The size of the low-intensity areas of Fe-Mn on MRI decreased relative to its microstructure on XRD with increasing Mn content. Conclusion: Based on these findings, proper conditioning of the Mn content in Fe-Mn alloys will improve its visibility on MR angiography, and a Mn content of more than 25% is recommended to reduce the magnetic susceptibility artifacts on MRI. A reduced artifact of Fe-Mn alloys on MRI is closely related to the paramagnetic constitution of ${\gamma}$-austenite and/or ${\varepsilon}$-martensite.

Changes of saccharide content in fruitbody composition of Flammulina velutipes during storage (팽이버섯의 저장기간 및 품종별 자실체내의 당 함량 변화)

  • Jhune, Chang-Sung;Yun, Hyung-Sik;Leem, Hoon-Tae;Kong, Won-Sik;Lee, Kang-Hyo;Sung, Gi-Ho;Cho, Jae-Han
    • Journal of Mushroom
    • /
    • v.9 no.3
    • /
    • pp.123-131
    • /
    • 2011
  • Winter mushroom was monitored to investigate the influence of storage temperature on its quality during the storage and distribution phase. In measuring its quality, the contents of saccharides were quantified with its fruiting bodies using HPLC. Although it has been known to be difficult to separate saccharide isomers, our results indicated that Grace Prevail carbohydrate ES $5{\mu}column$ was the best in the separation to analyze the saccharide out of six columns used in this study. In our results, xylose was the main component of saccharide in the fruiting body of winter mushroom(White line mushroom:47.68mg/g, brown line mushroom: 63.28mg/g). In long-term storage, the total amount of saccharide tended to increase, but trehalose content of the disaccharide decreased. In comparison with the paramount amount of lactose and myo-inositol contents in long-term storage at $4^{\circ}C$, lactose wasn't detected when stored at $-1^{\circ}C$.

A study on the interfacial reactions between electroless Ni-P UBM and 95.5Sn-4.0Ag-0.5Cu solder bump (무전해 Ni-P UBM과 95.5Sn-4.0Ag-0.5Cu 솔더와의 계면반응 및 신뢰성에 대한 연구)

  • ;;Sabine Nieland;Adreas Ostmann;Herbert Reich
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.05a
    • /
    • pp.85-91
    • /
    • 2002
  • Even though electroless Hi and Sn-Ag-Cu solder are widely used materials in electronic packaging applications, interfacial reactions of the ternary Ni-Cu~Sn system have not been known well because of their complexity. Because the growth of intermetallics at the interface affects reliability of solder joint, the intermetallics in Ni-Cu-Sn system should be identified, and their growth should be investigated. Therefore, in present study, interfacial reactions between electroless Ni UB7f and 95.5Sn-4.0Ag-0.5Cu alloy were investigated focusing on morphology of the IMCs, thermodynamics, and growth kinetics. The IMCs that appear during a reflow and an aging are different each other. In early stage of a reflow, ternary IMC whose composition is Ni$_{22}$Cu$_{29}$Sn$_{49}$ forms firstly. Due to the lack of Cu diffusion, Ni$_{34}$Cu$_{6}$Sn$_{60}$ phase begins growing in a further reflow. Finally, the Ni$_{22}$Cu$_{29}$Sn$_{49}$ IMC grows abnormally and spalls into the molten solder. The transition of the IMCs from Ni$_{22}$Cu$_{29}$Sn$_{49}$ to Ni$_{34}$Cu$_{6}$Sn$_{60}$ was observed at a specific temperature. From the measurement of activation energy of each IMC, growth kinetics was discussed. In contrast to the reflow, three kinds of IMCs (Ni$_{22}$Cu$_{29}$Sn$_{49}$, Ni$_{20}$Cu$_{28}$Au$_{5}$, and Ni$_{34}$Cu$_{6}$Sn$_{60}$) were observed in order during an aging. All of the IMCs were well attached on UBM. Au in the quaternary IMC, which originates from immersion Au plating, prevents abnormal growth and separation of the IMC. Growth of each IMC is very dependent to the aging temperature because of its high activation energy. Besides the IMCs at the interface, plate-like Ag3Sn IMC grows as solder bump size inside solder bump. The abnormally grown Ni$_{22}$Cu$_{29}$Sn$_{49}$ and Ag$_3$Sn IMCs can be origins of brittle failure.failure.

  • PDF

Effects of Composition on Soft Magnetic Properties and Microstructures of Fe-Hf-O Thin Films (Fe - Hf - O계 박막에서 조성이 미세구조 및 연자기 특성에 미치는 효과)

  • 박진영;김종열;김광윤;한석희;김희중
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.5
    • /
    • pp.237-242
    • /
    • 1997
  • The microstructure and soft magnetic properties of as-deposited Fe-Hf-O thin film alloys, which are produced at $P_{O2}=10%$ by rf magnetron sputtering method in $Ar+O_2$ mixed gas atmosphere, is investigated. Newly developed $Fe_{82}Hf_{3.4}O_{14.6}$ film exhibits good soft magnetic properties with $4{\pi}M_s=17.7$ kG, $H_c=0.7$ Oe and ${\mu}_{eff}$(0.5~100MHz)=2,500, respectively. The Fe-Hf-O films are composed of $\alpha$-Fe nanograins and amorphous phase with larger amounts of Hf and O elements which chemically combine each other. With increasing Hf area fraction, Hf and O contents increased proportionally. It was considered that O content in films was determined by Hf contents, because O was chemically combined with Hf. It results from decreasing the $\alpha$-Fe grain size by precipitates (Hf and O), high electrical resistivity. The $Fe_{82}Hf_{3.4}O_{14.6}$ film exhibits the quality factor (Q=$\mu$'/$\mu$") of 25 at 20 MHz. These good frequency characteristics are considered to be superior to other films already reported.o other films already reported.

  • PDF

Quality Characteristics of Ogapiju Prepared by Different Raw Materials (원료 첨가를 달리한 오가피주의 품질 특성)

  • Choi, Hyang-Sook;Min, Kyung-Chan
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.525-531
    • /
    • 2005
  • Quality characteristics of ogapiju prepared by adding different raw materials such as Acanthopanax(0, 0.1, 0.25, 0.5%), Ganoderma lucidum(0, 0.05%), pine needle (0, 0.05%), and red ginseng(0, 0.05%) were evaluated by chemical analyses and sensory evaluation. Total organic acid contents of samples containing ogapi and other medicinal herbs were higher than that of control group. Major free amino acid was histidine. Contents of total amino acid and free sugar were highest in sample C (Acanthopanax 0.1, G. lucidum 0.05, pine needle 0.50, red ginseng 0.05%). In each sample 31-49 volatile components were identified by solid-phase microextraction method, and 42 components were detected by sniff-test using GC-olfactometry. Ogapiju showed higher content of ${\alpha}-copaene$ than control group ${\alpha}-Pinene$, camphene, ${\beta}-pinene$, sabinene, ${\alpha}-terpinene,\;{\gamma}-terpinene$, p-cymene, terpinolene, ${\alpha}-thujone,\;{\beta}-thujone,\;{\alpha}-terpineol$, carvone, and ${\beta}-ionone$ were not identified in control group. Volatile composition of ogapiju was characterized by higher amount of terpenoids. Green and herbaceous note was stronger in ogapiju than control group. Sensory evaluation indicated that good taste and palatability were highest in sample C.

Comparative Analysis of Volatile Flavor Compounds in Taiwan Apple Mango and Philippines Carabao Mango (대만 산 애플 망고와 필리핀 산 카라바오 망고의 휘발성 향기성분 분석)

  • An, Mi-Ran;Keum, Young-Soo;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.2
    • /
    • pp.191-197
    • /
    • 2015
  • We investigated the physicochemical properties and volatile flavor compounds in Taiwan Apple Mango (TAM) and Philippines Carabao Mango (PCM). The volatile flavor compounds were extracted using solid-phase microextraction (SPME) and analyzed by GC/MS. TAM and PCM have significantly different chemical composition, except for their crude ash. The moisture and crude fat contents were higher in TAM, whereas the crude protein and carbohydrate contents were higher in PCM. The major free sugars in order of concentration were sucrose, fructose, and glucose. We identified 56 and 59 volatile flavor compounds in TAM and PCM, respectively. Terpenes and their derivatives comprised 94.42% of the volatile flavor compounds in TAM, but only 63.79% of those in PCM. The acidic compound contents were higher in PCM than in TAM. ${\delta}$-3-Carene was the dominant flavor compound in these two mango cultivars. ${\alpha}$-Copaene, ${\alpha}$-guaiene, germacrene D, ${\alpha}$-bulnesene, and ${\gamma}$-gurjunene were found only in TAM, whereas ${\beta}$-myrcene, ${\alpha}$-phellandrene, ${\beta}$-phellandrene, ${\alpha}$-terpinolene, and cis-3-hexenyl butyrate were identified in PCM. Based on the results, we suggest that these compounds might contribute to the distinguishing flavor properties in different varieties of mango.

Cultural conditions and growth characteristics of indigo (Polygonum tinctorium) cells in an air-lift bioreactor (공기부양 생물반응기에서의 쪽 (Polygonum tinctorium) 세포배양의 생육조건 및 생육특성)

  • 신중한;이형주
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.193-199
    • /
    • 1993
  • To find out the optimum conditions for indigo cell culture in air-lift bioreactor, effects of media composition including nutrients and precursors of the indigo colorants on the cell growth and characteristics of the cell growth under various cultural conditions were analyzed. Optimum cultural conditions were tested and the growth characteristics were analyzed in external and internal loop type air-lift bioreactors during 14-day culture. Better cell growth was obtained when the inoculum size was higher in the range of 0.5∼2.5% packed cell volume tested. In the sucrose concentration of 2 to 4%, the cell growth was better when the sucrose concentration was 4% (w/w) in both types of reactors. Sucrose was used up in the early stage of exponential phase of growth At the optimum concentration of a Precursor tryptophan at 1 U UW was 3.8 g/l in internal loop bioreactor, and 3.5 g/l in external one after 14 days of cultivation. Addition of indole showed negative effect on cell growth of suspension culture in air-lift biorector culture and cell mass of 2.5 g/l and 2.2 g/l were obtained in external and internal loop bioreactor, respectively. Selected inorganic nitrogen source potassium nitrate showed about 110% increase in cell growth than that of control. DCW was 16.34 g/l under optimum conditions during 14-day cultivation in internal loop bioreactor.

  • PDF