• 제목/요약/키워드: Phase boundary strengthening

검색결과 10건 처리시간 0.028초

이상 스테인레스강의 변형거동에 미치는 질소의 영향 (Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel)

  • 이형직;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.49-52
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied The variation of strength was correlated with the characteristic microstructures. Analysis based on Hall-Petch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces, and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism.

  • PDF

Ni3Al계 합금의 강화기구 (Strengthening Mechanism of the Ni3Al-based Alloy)

  • 한창석
    • 대한금속재료학회지
    • /
    • 제49권2호
    • /
    • pp.137-144
    • /
    • 2011
  • Strengthening mechanisms in an ordered intermetallic compound containing coherent precipitates of lower antiphase boundary energy than the matrix were investigated on the basis of the interaction between the deformation induced dislocations and the disordered precipitates in an $Ll_2$ ordered $Ni_3Al$-based alloy. Extra work was needed to pull out the dislocations from the precipitate, which was dependent on the difference in the antiphase boundary energy between the matrix and the precipitate, as well as the size and volume fraction of the precipitate. The strength of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase containing fine precipitates of the disordered ${\gamma}$ phase was examined using the proposed model. The model can explain almost quantitatively the age hardening behavior of the $Ll_2$ ordered ${\gamma}^{\prime}$ phase.

Articulatory modification of /m/ in the coda and the onset as a function of prosodic boundary strength and focus in Korean

  • 김사향;조태홍
    • 말소리와 음성과학
    • /
    • 제6권4호
    • /
    • pp.3-15
    • /
    • 2014
  • An articulatory study (using an Electromagnetic Articulography, EMA) was conducted to explore effects of prosodic boundary strength (Intonational Phrase/IP versus Word/Wd), and focus (Focused/accented, Neutral, Unfocused/unaccented) on the kinematic realization of /m/ in the coda (${\ldots}$am#i${\ldots}$) and the onset (${\ldots}$a#mi${\ldots}$) conditions in Korean. (Here # refers to a prosodic boundary such as an IP or a Wd boundary). Several important points have emerged. First, the boundary effect on /m/s was most robustly observed in the temporal dimension in both the coda (IP-final) and the onset (IP-initial) conditions, generally in line with cross-linguistically observable boundary-related lengthening patterns. Crucially, however, in contrast with boundary-related slowing-down effects that have been observed in English, both the IP-final and IP-initial temporal expansions of Korean /m/s were not accompanied by an articulatory slowing down. They were, if anything, associated with a faster movement in the lip opening (release) phase (into the vowel). This suggests that the mechanisms underlying boundary-related temporal expansions may differ between languages. Second, observed boundary-induced strengthening effects (both spatial and temporal expansions, especially on the IP-initial /m/s) were remarkably similar to prominence (focus)-induced strengthening effects, which is again counter to phrase-initial strengthening patterns observed in English in which boundary effects are dissociated from prominent effects. This suggests that initial syllables in Korean may be a common focus for both boundary and prominence marking. These results, taken together, imply that the boundary-induced strengthening in Korean is different in nature from that in English, each being modulated by the individual language's prosodic system. Third, the coda and the onset /m/s were found to be produced in a subtly but significantly different way even in a Wd boundary condition, a potentially neutralizing (resyllabification) context. This suggests that although the coda may be phonologically 'resyllabified' into the following syllable in a phrase-medial position, its underlying syllable affiliation is kinematically distinguished from the onset.

이상 스테인리스강의 변형거동에 미치는 질소의 영향 (Effects of Nitrogen on Deformation Behavior of Duplex Stainless Steel)

  • 이형직;장영원
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.284-289
    • /
    • 2003
  • The effects of nitrogen on the deformation behavior of duplex stainless steel have been studied. The variation of strength was correlated with the characteristic microstructures pertaining to nitrogen. Analysis based on Hall-fetch relation confirmed that nitrogen enhances phase-boundary strengthening effect. The evolution of dislocation structure, slip traces and misorientation distribution during deformation were also characterized to elucidate the effect of nitrogen on inelastic deformation mechanism. It has been verified in this study that the higher nitrogen content provides a dual-phase microstructure with smaller strength difference between austenite and ferrite resulting into the earlier transfer of inelastic deformation from austenite to ferrite.

Effect of nano-Nb2O5 on the microstructure and mechanical properties of AZ31 alloy matrix nanocomposites

  • Huang, Song-Jeng;Kannaiyan, Sathiyalingam;Subramani, Murugan
    • Advances in nano research
    • /
    • 제13권4호
    • /
    • pp.407-416
    • /
    • 2022
  • In this study, the gravitating mechanical stir casting method was used to fabricating the Nb2O5/AZ31 magnesium matrix nanocomposites. Niobium pentoxide (Nb2O5) used as reinforcement with two different weight percentages (3 wt % and 6 wt %). The influence of Nb2O5 on microstructure and mechanical properties has been investigated. The microstructure analysis showed that the composites are mainly composed of the primary α-magnesium phase and phase β-Mg17Al12 secondary phase. The secondary phase was dispersed evenly along the grain boundary of the Mg phase. The Nb2O5/AZ31 nanocomposites revealed that the grain size and its lamellar shape (β-Mg17Al12) were gradually refined. Different strengthening mechanisms were assessed in terms of their contributions. Results showed that composite material properties of hardness, yield strength, and fracture study were directly related to Nb2O5 as a reinforcement. The maximum values of the mechanical properties were achieved with the addition of 3 wt% Nb2O5 on the AZ31 alloy.

Ni기 초내열 합금 LESS 1의 합금설계 및 평가: I. 합금 설계 및 고온 상 안정성 평가 (Alloy Design and Properties of Ni based Superalloy LESS 1: I. Alloy Design and Phase Stability at High Temperature)

  • 윤정일;강병일;최봉재;김영직
    • 한국주조공학회지
    • /
    • 제33권5호
    • /
    • pp.215-225
    • /
    • 2013
  • The alloys required for fossil power plants are altered from stainless steel that has been used below $600^{\circ}C$ to Ni-based alloys that can operate at $700^{\circ}C$ for Hyper Super Critical (HSC) steam turbine. The IN740 alloy (Special Metals Co. USA) is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at about $700^{\circ}C$ indicated the formation of the eta phase with the wasting of a gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys, and this resulted in the formation of precipitation free zones to decrease the strength. On the basis of thermodynamic calculation, the new Ni-based superalloy named LESS 1 (Low Eta Sigma Superalloy) was designed in this study to improve the strengthening effect and structure stability by depressing the formation of topologically close packed phases, especially sigma and eta phases at high temperature. A thermal exposure test was carried out to determine the microstructure stability of LESS 1 in comparison with IN740 at $800^{\circ}C$ for 300 hrs. The experimental results show that a needle-shaped eta phase was formed in the grin boundary and it grew to intragrain, and a precipitation free zone was also observed in IN740, but these defects were entirely controlled in LESS 1.

YAG상 첨가 탄화규소-질화규소 복합재료의 기계적 특성 (Mechanical Properties of Silicon Carbide-Silicon Nitride Composites Sintered with Yttrium Aluminum Garnet)

  • 이영일;김영욱;최헌진;이준근
    • 한국세라믹학회지
    • /
    • 제36권8호
    • /
    • pp.799-804
    • /
    • 1999
  • Composites of SiC-Si3N4 consisted of uniformly distributed elongated $\beta$-Si3N4 grains and equiaxed $\beta$-SiC grains were fabricated with $\beta$-SiC,. $\alpha$-Si3N4 Al2O3 and Y2O3 powders. By hot-pressing and subsequent annelaing elongated $\beta$-Si3N4 grains were grown via$\alpha$longrightarrow$\beta$ phase transformation and equiaxed $\beta$-Si3N4 composites increased with increasing the Si3N4 content owing to the reduced defect size and enhanced crack deflection by elongated $\beta$-Si3N4 grains and the grain boundary strengthening by nitrogen incorporation. Typical flexural strength and fracture toughness of SiC-40 wt% Si3N4 composites were 783 MPa and 4.2 MPa.m1/2 respectively.

  • PDF

HSLA-100강 및 HY-100강의 응력제거처리 균열에 관한 연구 (A Study on the Stress Relief Cracking of HSLA-100 and HY-100 steels)

  • 박태원;심인옥;김영우;강정윤
    • Journal of Welding and Joining
    • /
    • 제14권3호
    • /
    • pp.48-57
    • /
    • 1996
  • A study was made to examine the characteristics of base metal and stress relief cracking(SRC) of heat affected zone(HAZ) for HY-100 and Cu-bearing HSLA-100 steels. The Gleeble thermal/mechanical simulator was used to simulate the SRC/HAZ. The details of mechanical properties of base plate and SRC tested specimens were studied by impact test, optical microscopy and scanning electron microscopy. The specimens were aged at $650^{\circ}C$ for HSLA-100 steel and at $660^{\circ}C$ for HY-100 steel and thermal cycled from $1350^{\circ}C$ to $25^{\circ}C$ with a cooling time of $\Delta$t_${800^{circ}C/500^{circ}C}$=21sec. corresponds to the heat input of 30kJ/cm. The thermal cycled specimens were stressed to a predetermined level of 248~600MPa and then reheated to the stress relief temperatures of $570~620^{\circ}C$. The time to failure$(t_f)$ at a given stress level was used as a measure of SRC susceptibility. The strength, elongation and impact toughness of base plate were greater in HSLA-100 steel than in HY-100 steel. The time to failure was decreased with increasing temperature and/or stress. HSLA-100 steel was more susceptible to stress relief cracking than HY-100 steel under same conditions. It is thought to be resulted from the precipitation of $\varepsilon$-Cu phase by dynamic self diffusion of solute atoms. By the precipitation of $\varepsilon$-Cu phase, the differential strengthening of grain interior relative to grain boundary may be greater in the Cu-bearing HSLA-100 steel than in HY-100 steel. Therefore, greater strain concentration at grain boundary of HSLA-100 steel results in the increased SRC susceptibility. The activation energies for SRC of HSLA-100 steel are 103.9kcal/mal for 387MPa and 87.6kcal/mol for 437MPa and that of HY-100 steel is 129.2kcal/mol for 437MPa.

  • PDF

Guided waves of porous FG nanoplates with four edges clamped

  • Zhao, Jing-Lei;She, Gui-Lin;Wu, Fei;Yuan, Shu-Jin;Bai, Ru-Qing;Pu, Hua-Yan;Wang, Shilong;Luo, Jun
    • Advances in nano research
    • /
    • 제13권5호
    • /
    • pp.465-474
    • /
    • 2022
  • Based on the nonlocal strain gradient (NSG) theory and considering the influence of moment of inertia, the governing equations of motion of porous functionally graded (FG) nanoplates with four edges clamped are established; The Galerkin method is applied to eliminate the spatial variables of the partial differential equation, and the partial differential governing equation is transformed into an ordinary differential equation with time variables. By satisfying the boundary conditions and solving the characteristic equation, the dispersion relations of the porous FG strain gradient nanoplates with four edges fixed are obtained. It is found that when the wave number is very small, the influences of nonlocal parameters and strain gradient parameters on the dispersion relation is very small. However, when the wave number is large, it has a great influence on the group velocity and phase velocity. The nonlocal parameter represents the effect of stiffness softening, and the strain gradient parameter represents the effect of stiffness strengthening. In addition, we also study the influence of power law index parameter and porosity on guided wave propagation.

북극진동과 해수면온도가 한반도 한파에 미치는 영향 (Effect of Arctic Oscillation and Sea Surface Temperature on Cold Surges over the Korean Peninsula)

  • 안상현;정다흰;여성민;노엘;김주완
    • 한국제4기학회지
    • /
    • 제33권1_2호
    • /
    • pp.37-48
    • /
    • 2021
  • 한파는 겨울철 동아시아 지역의 대표적인 위험 기상 현상으로, 시베리아 고기압에 지배적인 영향을 받으며, 북극 지역의 기압장이 일정 주기로 강약을 되풀이하는 북극진동의 위상과도 밀접한 관련이 있다. 또한, 한반도-일본 동쪽 해상에서 발달하는 저기압은 해수면 온도에 민감하고 한파발생 시 한반도로 유입되는 한랭 이류의 강화에 중요한 역할을 한다. 본 연구에서는 겨울철 동아시아 한파의 대규모 배경장에 영향을 미치는 북극진동과 저기압과 관련된 급격한 기온 변화에 기여하는 동아시아 해안 지역의 해수면 온도를 분석하였다. 분석을 위해 49년(1969/70-2017/18) 동안 한반도 5개의 관측소에서 측정된 일 평균기온 중 하위 3%에 해당하는 날을 한파 사례로 선택하였다. 북극진동이 음의 위상일 때, 동아시아 지역에 위치한 기압골이 강해지며 극 지역의 한랭한 공기 유입이 강화되어 한파가 빈번하게 발생함을 확인하였다. 또한, 동아시아 주변의 해수면 온도가 평균보다 높은 경우 대기와 해양의 온도 및 습도 차이로 인해 현열 및 잠열 방출이 강화되며, 종관 저기압이 더 강하게 발달하여 기온이 빠르게 하강하는 극심한 한파가 발생할 가능성을 보였다.