• Title/Summary/Keyword: Phase Stepping

Search Result 103, Processing Time 0.029 seconds

Rotor position detection of bifilar-wound hybrid stepping motors by phase current measurement (상전류 측정에 의한 복권형 하이브리드 스테핑 전동기의 회전자 위치 검출)

  • Kim, Kyu-Hui;You, Jeong-Bong;Woo, Kwang-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.619-625
    • /
    • 1997
  • In this paper, we show that the rotor position of the bifilar-wound hybrid stepping motors for the closed-loop drives is detected by the phase current measurement. We propose an instantaneous phase current equation, which is the function of electrical angle, by modeling the stepping motor including motor driving circuits. We also analyze the relationship between phase current and rotor position from the computer simulation results. We show that the information about the rotor position is obtained from the phase current amplitude and its derivatives at the instance of ${\pi}/2$ electrical angle of excitation voltage.

  • PDF

Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors (2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상)

  • Do-Hyun, Kim;Sang-Hoon, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

Micro-Vibration Test on a Two-Axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Choi, Hong-Taek;Park, Gee-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.420-424
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting on image jitter response of a satellite. The gimbal system can be rotated on its azimuth and elevation axes, resulting in variation of its moment of inertia and structural modes, so that generates non-linear vibration characteristics. In order to estimate the jitter response, it is an indispensable process to characterize micro-vibration disturbance of the 2-axis gimbal system. In the present research, the vibration characteristics of the 2-axis gimbal system was investigated with respect to the types of stepping motors. The micro-vibration tests were performed for 2-phase and 5-phase stepping motors. The test results show that the disturbance can be reduced with vibration attenuation ratio of 60% by replacing the 2-phase stepping motor with the 5-phase one.

  • PDF

Cogging Force Reduction of Two Phase Linear Hybrid Stepping Motor (2상 선형 하이브리드 스테핑 전동기의 코깅 리플 저감)

  • Hwarg, Tai-Sik;Seok, Jul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.96-98
    • /
    • 2005
  • This paper presents a new two-phase linear hybrid stepping motors (LHSM), which has two windings per phase and one of them shares the other phase winding. The proposed motor shows a unique ability to deliver low cogging force without any particular complex control scheme and additional power electronics hardware in micro stepping control. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed design.

  • PDF

Performance Improvement of the 2-phase Stepping Motor Driver with CPLD (CPLD를 이용한 2상 스테핑 모터 드라이버의 성능개선)

  • 오태석;전성구;김일환
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.9
    • /
    • pp.615-621
    • /
    • 2004
  • This paper describes the design of a 2-phase stepping motor driver using CPLD. The driver IC such as L297, which is mostly used has some difficulties in PWM current control because of the switching noise of power MOSFETs. The switching noise causes current ripple and acoustic noise. To reduce the switching noise, we designed a digital filter using VHDL. Also we designed constant current method for 1-2 phase(half step) excitation to reduce the torque ripple. Experimental results show the effectiveness of the proposed method. It is enabling further enhancements of stepping motor drive technology broadening the range of applications for the stepping motors.

Study on Steady State Analysis of High Power Three-Phase Transformer using Time-Stepping Finite Element Method (시간차분 유한요소법을 이용한 대용량 삼상 변압기의 정상상태 해석에 관한 연구)

  • Yoon, Hee-Sung;Seo, Min-Kyu;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.8
    • /
    • pp.1123-1129
    • /
    • 2012
  • This paper presents the fast steady state analysis using time-stepping finite element method for a high power three-phase transformer. The high power transformer spends huge computational cost of the time-stepping finite element method. It is because that the high power transformer requires a lot of time to reach steady state by its large inductance component. In order to reduce computational cost, in this paper, the adaptive time-step control algorithm combined with the embedded 2nd 4th singly diagonally implicit Runge-Kutta method and the analysis strategy using variation of the winding resistance are studied, and their numerical results are compared with those from the typical time-stepping finite element method.

Improved Characteristic Analysis of a 5-phase Hybrid Stepping Motor Using the Neural Network and Numerical Method

  • Lim, Ki-Chae;Hong, Jung-Pyo;Kim, Gyu-Tak;Im, Tae-Bin
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.2
    • /
    • pp.15-21
    • /
    • 2001
  • This paper presents an improved characteristic analysis methodology for a 5-phase hybrid stepping motor. The basic approach is based on the use of equivalent magnetic circuit taking into account the localized saturation throughout the hybrid stepping motor. The finite element method(FEM) is used to generate the magnetic circuit parameters for the complex stator and rotor teeth and airgap considering the saturation effects in tooth and poles. In addition, the neural network is used to map a change of parameters and predicts their approximation. Therefore, the proposed method efficiently improves the accuracy of analysis by using the parameter characterizing localized saturation effects and reduces the computational time by using the neural network. An improved circuit model of 5-phase hybrid stepping motor is presented and its application is provided to demonstrate the effectiveness of the proposed method.

A Study on Micro-step of 2-phase Hybrid Type Linear Stepping Motor (2상 하이브리드형 리니어 스텝핑 전동기의 미세스텝에 관한 연구)

  • Oh, Hong-Seok;Kim, Dong-Hui;Lee, Sang-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.5
    • /
    • pp.358-363
    • /
    • 2000
  • In this paper, a voltage equations, a thrust force equations and kinetic equation are derived from the basic structure of a 2-phase hybrid type linear stepping motor(HLSM). And a micro-stepping method in order to eliminate effectively the resonant phenomena and to increase the positional resolution of the HLSM was proposed. The proposed micro-stepping method can divide one step into the maximum 128 micro-steps under simple control system. The dynamic characteristics of proposed micro-stepping method were analyzed by the ACSL(Advanced Continuous Simulation Language) with the voltage equations, the thrust force equations and the kinetic equation, and were measured by laser experimental system. As the result, the justice of theory was confirmed, and the resonant phenomena, the positional resolution and dynamic thrust were improved by the proposed micro-stepping method.

  • PDF

Micro-vibration Test on a Two-axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Yong, Ki-Lyuk;Choi, Hong-Taek;Park, Gee-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1042-1048
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting image jitter response of a satellite. The gimbal system comprises azimuth stage and elevation stage, and these pointing mechanism can be rotated by stepping motors about its azimuth and elevation axes simultaneously. Because of the complex and coupled dynamic motion of the gimbal system, its moment of inertia and structural modes can be changed according to the system configuration, and thus the gimbal system generates complicated and non-linear disturbance characteristics. In order to improve the jitter response of a spacecraft, it is an indispensable process to reduce the micro-vibration disturbance level of the antenna system. In the present research, a 2-axis gimbal system was manufactured and then its micro-vibration test was performed in terms of two types of stepping motors(2-phase and 5-phase). The test results show that the disturbance level of the gimbal system can be reduced by replacing the 2-phase stepping motor with the 5-phase one, and the average disturbance attenuation ratio is 56 % in peak level and 48 % in standard deviation level. The experimental results confirm that it is an efficient jitter reduction method to adopt a high-phase stepping motor.

A Study on the One-chip Design of Low Cost for Micro-stepping Drive of 5-Phase Stepping Motor Having Pentagon Type Winding (5상 펜타곤 결선방식 스테핑 모더의 마이크로스텝 구동을 위한 저가형 전용 칩 설계에 관한 연구)

  • Kim Myung-Hyun;Ahn Ho-Kyun;Park Seung-Kyu;Son Young-chul
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.451-454
    • /
    • 2002
  • In this paper, studied on the one-chip design of low cost for the micro-stepping drive having 5-phase Pentagon Type winding. Micro-stepping method in order to eliminate effectively the resonant phenomena and to Increase the positional resolution. This paper proposed trapezoidal current wave- form for current control and provided design- method by using only one-chip of low cost. Therefore the drive will be simple and small size. Also the drive will have a lot of advantage at commercial business. Finally the above study has been implemented on the VHDL. Simulation has been performed to verify the PWM for micro-stepping drive.

  • PDF