• Title/Summary/Keyword: Phase Image

Search Result 1,436, Processing Time 0.027 seconds

The Development of an Electroconductive SiC-ZrB2 Composite through Spark Plasma Sintering under Argon Atmosphere

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Park, Jin-Hyoung;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.342-351
    • /
    • 2010
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40, 45 and 50 vol. % of zirconium diboride ($ZrB_2$) powders with silicon carbide (SiC) matrix. The SiC-$ZrB_2$ composites and the sintered compacts were produced through spark plasma sintering (SPS) under argon atmosphere, and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via x-ray diffraction (XRD) analysis. The apparent porosity of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were 7.2546, 0.8920, 0.6038, 1.0981, and 10.0108%, respectively. The XRD phase analysis of the sintered compacts demonstrated a high phase of SiC and $ZrB_2$. Among the $SiC+ZrB_2$ composites, the SiC+50vol.%$ZrB_2$ composite had the lowest flexural strength, 290.54MPa, the other composites had more than 980MPa flexural strength except the SiC+30vol.%$ZrB_2$ composite; the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 1011.34MPa, at room temperature. The electrical properties of the SiC-$ZrB_2$ composites had positive temperature coefficient resistance (PTCR). The V-I characteristics of the SiC-$ZrB_2$ composites had a linear shape in the temperature range from room to $500^{\circ}C$. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ SiC+45vol.%$ZrB_2$ and SiC+50vol.%$ZrB_2$ composites were $4.573\times10^{-3}$, $1.554\times10^{-3}$, $9.365\times10^{-4}$, $6.999\times10^{-4}$, and $6.069\times10^{-4}\Omega{\cdot}cm$, respectively, at room temperature, and their resistance temperature coefficients were $1.896\times10^{-3}$, $3.064\times10^{-3}$, $3.169\times10^{-3}$, $3.097\times10^{-3}$, and $3.418\times10^{-3}/^{\circ}C$ in the temperature range from room to $500^{\circ}C$, respectively. Therefore, it is considered that among the sintered compacts the SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites containing the most outstanding mechanical properties as well as PTCR and V-I characteristics can be used as an energy friendly ceramic heater or ohmic-contact electrode material through SPS.

A interpretive Study of the Analects of Confucius's Chapter I-1 (『논어(論語)』 「학이(學而)」 1장의 해석학적(解釋學的) 연구(硏究))

  • Seo, Geun-sik
    • (The)Study of the Eastern Classic
    • /
    • no.32
    • /
    • pp.189-213
    • /
    • 2008
  • When we say the core thought of the Analects of Confucius, we normally come up with 'Ren(仁)'. However, in the first phrase of Chapter One("學而") of the Analects, there is no mention about 'Humanity'. Then, why the editor of the Analects of Confucius had put the First Chapter at the opening of book? This paper aims to describe the fact that the First Chapter One of the Analects of Confucius implies the core thought of Kongzi(孔子). In the First Chapter One, the vocabularies, such as 'Pleasure'(說), 'Delight'(樂), and 'Confucian Gentlemen'(君子) are central to the phrasal structure. 'Pleasure'(說) is the phase to cultivate himself, or the phase to equip with a qualification in order 'to establish a righteous relation'. And 'Delight'(樂) is the stage to establish relationships with colleagues who share same value and ambition with himself. 'Confucian Gentlemen'(君子) is the stage to 'establish righteous relationships' with all people in the world, and it denotes an ideal human image presented by Kongzi(孔子). The core concepts of the First Chapter One are connected to the core thoughts of the Analects of Confucius, to wit, 'Ren'(仁), 'Shu'(恕), and 'Xiujizhiren'(修己治人). If 'Ren'(仁) and 'Shu'(恕) refer to specifically 'establishment of righteous relationship', then 'Pleasure'(說) is the stage to obtain qualification in order to 'establish righteous relationship', and 'Delight'(樂) is the stage to 'establish relationships' with brothers and colleagues, and 'Confucian Gentlemen'(君子) means a person who can build up 'righteous relationships' with all the people of the world. Regarding the Confucianism in 'Character building and guiding other souls' Confucius presents three phases, viz. 'Cultivation of himself in reverential carefulness'(修己以敬) ${\rightarrow}$ 'Cultivation of himself so as to give rest to others'(修己以安人) ${\rightarrow}$ 'Cultivation of himself so as to give rest to all the people'(修己以安百姓), and the se get through 'Pleasure'(說) ${\rightarrow}$ 'Delight'(樂) ${\rightarrow}$ 'Confucian Gentlemen'(君子) in the First Chapter One of the Analects of Kongzi(孔子). The human image, named 'Confucian Gentlemen'(君子) presented in the Chapter One is equated with the human who practices 'morality'(修養) that attained by means of 'cultivation'(實踐) through 'establishment of relationship'.

An Analysis of the Change of Secondary Earth Science Teachers' Knowledge about the East Sea's Currents through Drawing Schematic Current Maps (해류도 그리기를 통한 중등학교 지구과학 교사들의 동해 해류에 대한 지식의 변화 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Lee, Ki-Young;Choi, Byoung-Ju;Lee, Sang-Ho;Kim, Young-Taeg;Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.258-279
    • /
    • 2015
  • The purpose of this study was to analyze the change of secondary earth science teachers' knowledge about the currents of the East Sea through drawing of a schematic map of oceanic currents. For this purpose, thirty two earth science teachers participated in the six-hour long training of learning and practice related to ocean current schematic map. The teacher participants performed drawing of the ocean current schematic map of the East Sea in three different phases, i.e.; pre-, post-, and delayed-post phase. In addition, all the maps conducted by participants were converted to digitalized image data. Detailed analysis were performed to investigate participating teachers' knowledge about the currents of the East Sea. Findings are as follows: First, the teacher participants have background knowledge about the ocean current map, but it reveals an incorrect knowledge about some concepts. Second, after teacher training, teachers' knowledge increased about the East Sea's currents, while a decrease was found in the differences between individual teachers' knowledge. This pattern was more evident in the delayed-post phase of drawing than in the post-phase occurred immediately after training. Third, the teacher participants were strongly aware of the need to improve the ocean current schematic map of the East Sea in science textbook in terms of scientific knowledge. In addition, they showed a high level of satisfaction about teacher training because they perceived that it was meaningful in various aspects; recognizing the importance of content knowledge and conjunction with instructional strategies, the needs of secondary science curriculum, and recognition of the nature of scientific knowledge. The results imply that teachers' subject matter knowledge plays a significant role to make science teaching effective.

Hepatic Parenchrmal Changes After Percutaneous Injection of Holmium-166 in Rabbit (가토 간내에 Holmium-166 주입 후의 간 실질 변화)

  • 최병인;김명진;박영년;김주희;최병욱
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.43-48
    • /
    • 2001
  • Purpose : To evaluate changes in rabbit liver parenchyma on MR images following percutaneous Holmium-166 injection, and to correlate those changes with histologic findings. Materials and methods. Holmium-166 (10-25 mCi) was percutaneously injected into the liver of rabbit (n=12) under sonographic guidance. MR images were obtained between one to two weeks (acute phasea) after the injection in four rabbits, and between two to four weeks (subacute phase) after the injection in four rabbits. Tissue specimens of these eight rabbits were obtained immediately after MR imaging. Tissue specimens were obtained without MR imaging in four rabbits (between one to two weeks in one rabbit and between three to four weeks in three rabbits). Results : Tissue specimens showed central liquefactive necrosis and peripheral coagulative necrosis containing deposition of small particles and hemorrhage. The peripheral margin of the lesions showed formation of the granulation tissue with fibrosis, which tended to be more prominent in subacute phase. The area of the necrosis tended to correlate with the dose of the radioactive Holmium-166. On MR images, the central portion of the necrosis showed hyperintensity on 72-weighted image, hypointensity on the precontrast T1-weighted images, and no enhancement on the dynamic MR images. The peripheral portion of the necrosis showed hypointensity on T2-weighted images, iso or mild hypointensity on the T1-weighted images, and mild peripheral enhancement on the delayed dynamic MR images. The peripheral margin of the lesion showed hypointensity on both T1- and T1-weighted images with increased enhancement on the delayed phase images of the dynamic MR images. Conclusion : After percutaneous Holmium-166 injection into rabbit liver parenchyma, the central portion showed liquefactive necrosis, the peripheral portion showed coagulative necrosis with granulation, fibrosis, hemorrhage and depostition of small granules. MR imaging may be helpful in evaluation of the histological change of the liver after percutaneous Holmium-166 treatment.

  • PDF

Usefulness of Posture Change to Prevent Overlapping of Heart and Other Organs in Myocardial Perfusion SPECT using $^{99m}Tc$ Labeled Compound ($^{99m}Tc$ 표지화합물을 사용한 심근 관류 SPECT 검사에서 심장과 타 장기와의 중첩 방지를 위한 자세 변화의 유용성)

  • Lee, Dong-Hyuk;Oh, Shin-Hyun;Jeong, Seok;Jo, Seok-Won;NamKoong, Hyuk;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2012
  • Purpose: The present study has an objective of effectively separating and making observations on a portion of radiopharmaceutical excreted via digestive organ to remain in the organ and invade a heart shadow. Materials and methods: When heart shadow is blocked by the organ in tests during a resting phase and a loaded phase, additional images were obtained using immobilization device. The immobilization devices were used to tilt the upper body forward from supine position. Results: In the reconstructed image for the separated case, as compared with the case where a part of organ is overlapped with heart, in terms of an overall mean value for each parameter, the end-diastolic volume increased by 2.75 mL, the end-systolic volume decreased by 3.16 mL, the left ventricle cardiac coefficient increased by 3.58%, and the area of defect region decreased by 3.58 and 3.92 cm for loading and resting phase, respectively. Conclusions: In the present study with myocardial perfusion SPECT, overlapped areas of heart and other organs could be effectively separated and visualization by the use of an immobilization device.

  • PDF

Evaluation on Usefulness of Abdomen and Chest Motion Control Device (ABCHES) for the Tumor with a Large Respiratory Motion in Radiotherapy (호흡으로 인한 움직임이 큰 종양의 방사선치료 시 Abdomen and Chest Motion Control Device (ABCHES)의 유용성 평가)

  • Cho, Yoon-Jin;Jeon, Mi-Jin;Shin, Dong-Bong;Kim, Jong-Dae;Kim, Sei-Joon;Ha, Jin-Sook;Im, Jung-Ho;Lee, Ik-Jae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.85-93
    • /
    • 2012
  • Purpose: It is essential to minimize the respiratory-induced motion of involved organs in the Tomotherapy for tumor located in the chest and abdominal region. However, the application of breathing control system to Tomotherapy is limited. This study was aimed to investigate the possible application of the ABCHES system and its efficacy as a means of breathing control in the tomotherapy treatment. Materials and Methods: Five subjects who were treated with a Hi-Art Tomotherapy system for lung, liver, gallbladder and pancreatic tumors. All patients undertook trained on two breathing methodes using an ABCHES, free breathing methode and shallow breathing methode. When the patients could carry out the breathing control, 4D-CT scan was a total of 10 4D tomographic images were acquired. A radiologist resident manually drew the tumor region, including surrounding nomal organs, on each of CT images at the inhalation phase, the exhalation phase and the 40% phase (mid-inhalation) and average CT image. Those CT images were then exported to the Tomotherapy planning station. Data exported from the Tomotherapy planning station was analyzed to quantify characteristics of dose-volume histograms and motion of tumors. Organ motions under free breathing and shallow breathing were examined six directions, respectively. Radiation exposure to the surrounding organs were also measured and compared. Results: Organ motion is in the six directions with more than a 5 mm displacement. A total of 12 Organ motions occurred during free breathing while organ motions decreased to 2 times during shallow breathing under the use of Abches. Based on the quantitative analysis of the dose-volume histograms shallow breathing showed lower resulting values, compared to free breathing, in every measure. That is, treatment volume, the dose of radiation to the tumor and two surrounding normal organs (mean doses), the volume of healthy tissue exposed to radiation were lower at the shallow breathing state. Conclusion: This study proposes that the use of ABCHES is effective for the Tomotherapy treatment as it makes shortness of breathing easy for patients. Respiratory-induced tumor motion is minimized, and radiation exposure to surrounding normal tissues is also reduced as a result.

  • PDF

Optical Property of Super-RENS Optical Recording Ge2Sb2Te5 Thin Films at High Temperature (초해상 광기록 Ge2Sb2Te5 박막의 고온광물성 연구)

  • Li, Xue-Zhe;Choi, Joong-Kyu;Lee, Jae-Heun;Byun, Young-Sup;Ryu, Jang-Wi;Kim, Sang-Youl;Kim, Soo-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.5
    • /
    • pp.351-361
    • /
    • 2007
  • The samples composed of a GST thin film and the protective layers of $ZnS-SiO_2$ or $Al_2O_3$ coated on c-Si substrate were prepared by using the magnetron sputtering method. Samples of three different structures were prepared, that is, i) the GST single film on c-Si substrate, ii) the GST film sandwiched by the protective $ZnS-SiO_2$ layers on c-Si substrate, and iii) the GST film sandwiched by $Al_2O_3$ protective layers on c-Si substrate. The ellipsometric constants in the temperature range from room temperature to $700^{\circ}C$ were obtained by using the in-situ ellipsometer equipped with a conventional heating chamber. The measured ellipsometric constants show strong variations versus temperature. The variation of ellipsometric constants at the temperature region higher than $300^{\circ}C$ shows different behaviors as the ambient medium is changed from in air to in vacuum or the protective layers are changed from $ZnS-SiO_2$ to $Al_2O_3$. Since the long heating time of 1-2 hours is believed to be the origin of the high temperature variation of ellipsometric constants upon the heating environment and the protective layers, a PRAM (Phase-Change Random Access Memory) recorder is introduced to reduce the heating time drastically. By using the PRAM recorder, the GST samples are heated up to $700^{\circ}C$ decomposed preventing its partial evaporation or chemical reactions with adjacent protective layers. The surface image obtained by SEM and the surface micro-roughness verified by AFM also confirmed that samples prepared by the PRAM recorder have smoother surface than the samples prepared by using the conventional heater.

Analysis of Acquisition Parameters That Caused Artifacts in Four-dimensional (4D) CT Images of Targets Undergoing Regular Motion (표적이 규칙적으로 움직일 때 생기는 4DCT 영상의 모션 아티팩트(Motion Artifact) 관련된 원인분석)

  • Sheen, Heesoon;Han, Youngyih;Shin, Eunhyuk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.243-252
    • /
    • 2013
  • The aim of this study was to clarify the impacts of acquisition parameters on artifacts in four-dimensional computed tomography (4D CT) images, such as the partial volume effect (PVE), partial projection effect (PPE), and mis-matching of initial motion phases between adjacent beds (MMimph) in cine mode scanning. A thoracic phantom and two cylindrical phantoms (2 cm diameter and heights of 0.5 cm for No.1 and 10 cm for No.2) were scanned using 4D CT. For the thoracic phantom, acquisition was started automatically in the first scan with 5 sec and 8 sec of gantry rotation, thereby allowing a different phase at the initial projection of each bed. In the second scan, the initial projection at each bed was manually synchronized with the inhalation phase to minimize the MMimph. The third scan was intentionally un-synchronized with the inhalation phase. In the cylindrical phantom scan, one bed (2 cm) and three beds (6 cm) were used for 2 and 6 sec motion periods. Measured target volume to true volume ratios (MsTrueV) were computed. The relationships among MMimph, MsTrueV, and velocity were investigated. In the thoracic phantom, shorter gantry rotation provided more precise volume and was highly correlated with velocity when MMimph was minimal. MMimph reduced the correlation. For moving cylinder No. 1, MsTrueV was correlated with velocity, but the larger MMimph for 2 sec of motion removed the correlation. The volume of No. 2 was similar to the static volume due to the small PVE, PPE, and MMimph. Smaller target velocity and faster gantry rotation resulted in a more accurate volume description. The MMimph was the main parameter weakening the correlation between MsTrueV and velocity. Without reducing the MMimph, controlling target velocity and gantry rotation will not guarantee accurate image presentation given current 4D CT technology.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.