• Title/Summary/Keyword: Phase Equilibrium

Search Result 597, Processing Time 0.027 seconds

Dynamic Behavior Study in Systems Containing Nonpolar Hydrocarbon Oil and C12E5 Nonionic Surfactant (C12E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동 관찰)

  • Bae, Min Jung;Lim, Jong Choo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.46-53
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed in systems containing $C_{12}E_5$ nonionic surfactant solution and nonpolar hydrocarbon oil. The phase behavior result showed an oil-in-water(O/W) microemulsion(${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water-in-oil(W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a 3 phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop with time were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous surfactant solution were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time were found to increase with an increase in the chain length of a hydrocarbon oil.

Dynamic Behavior Study Using Videomicroscopy in Systems Containing Nonpolar Hydrocarbon Oil and C10E5 Nonionic Surfactant Solution (Videomicroscopy를 이용한 C10E5 비이온 계면활성제 수용액과 비극성 탄화수소 오일 사이의 동적 거동에 관한 연구)

  • Bae, Min-Jung;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.473-478
    • /
    • 2009
  • Phase equilibrium and dynamic behavior studies were performed on systems containing $C_{10}E_5$ nonionic surfactant solutions and nonpolar hydrocarbon oils. The phase behavior showed an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with excess oil phase at low temperatures and a water in oil (W/O) ${\mu}E$ in equilibrium with excess water phase at high temperatures. For intermediate temperatures a three-phase region containing excess water, excess oil, and a middle-phase microemulsion was observed and the transition temperature was found to increase with an increase in the chain length of a hydrocarbon oil. Dynamic behavior at low temperatures showed that an oil drop size decreased linearly with time due to solubilization into micelles and the solubilization rate decreased with an increase in the chain length of a hydrocarbon oil. On the other hand, both spontaneous emulsification of water into oil phase and expansion of oil drop were observed because of diffusion of surfactant and water into oil phase. Under conditions of a 3 phase region including a middle-phase ${\mu}E$, both rapid solubilization and emulsification of oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Interfacial tensions were measured as a function of time for n-decane oil drops brought into contact with 1 wt% surfactant solution at $25^{\circ}C$. Both equilibrium interfacial tension and equilibration time increased with an increase in the chain length of a hydrocarbon oil.

High Pressure Binary Phase Equilibria Measurements of α-Tetralol with Carbon Dioxide (이산화탄소와 α-Tetralol과의 2성분계 고압상평형 측정)

  • Byun, Hun-Soo;Kim, Choon-Ho;Hwang, Young-Gi;Kwak, Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.67-74
    • /
    • 1996
  • The binary phase equilibrium experiments of carbon dioxide/1,2,3,4 ${\alpha}$-tetrahydro-1-naphthol(${\alpha}$-tetralol) system were conducted to get phase equilibrium and mixture density data at 313.2K, 343.2K and 373.2K and within pressure ranges of 6.0 MPa to 35.0MPa. The phase equilibrium apparatus was type that circulated the vapor and liquid phase, the expended volume measuring system was adopted to microsampling technique for the analysis. The phase equilibrium and mixture density data were obtained for carbon dioxide/${\alpha}$-tetralol system from liquid and vapor phase. The mole fraction of carbon dioxide in liquid phase decreases and the mole fraction of ${\alpha}$-tetralol in vapor phase increases at constant pressure according to increment of temperature, and both the densities of the vapor and liquid phase approach to the mixture critical density as the pressure increases at any temperature. For she thermodynamic analysis, the experimental data were correlated with Peng-Robinson equation in cubic equation of state and compared to theoretical values of carbon dioxide/${\alpha}$-tetralol system. The AAD result was in the range of 1.08%~8.93% in the case of K(1), and was in the range of 45.71%~72.34% in the case of K(2).

  • PDF

AN EXTENSION OF THE SMAC ALGORITHM FOR THERMAL NON-EQUILIBRIUM TWO-PHASE FLOWS OVER UNSTRUCTURED NON-STAGGERED GRIDS (과도상태 2상유동 해석을 위한 비정렬.비엇갈림 격자 SMAC 알고리즘)

  • Park, I.K.;Yoon, H.Y.;Cho, H.K.;Kim, J.T.;Jeong, J.J.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.51-61
    • /
    • 2008
  • The SMAC (Simplified Marker And Cell) algorithm is extended for an application to thermal non-equilibrium two-phase flows in light water nuclear reactors (LWRs). A two-fluid three-field model is adopted and a multi-dimensional unstructured grid is used for complicated geometries. The phase change and the time derivative terms appearing in the continuity equations are implemented implicitly in a pressure correction equation. The energy equations are decoupled from the momentum equations for faster convergence. The verification of the present numerical method was carried out against a set of test problems which includes the single and the two-phase flows. The results are also compared to those of the semi-implicit ICE method, where the energy equations are coupled with the momentum equation for pressure correction.

A study on phase transition of Hydrogel: (I)Volume Phase Transition of N-Isopropylacrylamide gel (수화겔의 상전이에 관한 연구: (I)폴리(N-이소프로필아크릴아미드)겔의 부피상전이)

  • Park, Sang-Bo;Min, Seong-Kee
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.21 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Equilibrium swelling curves of N-isopropyl acrylamide(NIPA) gel and its ionized copolymer gels were obtained as a function of temperature. Discontinuous volume changes of the gels were observed. Phase transition temperature was increased with the ionized counter parts of the gels. Equilibrium swelling of ionized copolymer gel cylinder was found to depend strongly on their diameters. Crosslinking density of NIPA gel was adjusted by increasing N,N'-methylenebisacrylamide(BIS). Phase transition temperature was increased with the crosslinking density.

  • PDF

Application of Thermodynamic Models for Analysis on SI Thermochemical Hydrogen Production Process (SI 열화학 수소 생산 공정의 분석을 위한 열역학 모델의 적용)

  • Lee, Jun Kyu;Kim, Ki-Sub;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.2 no.2
    • /
    • pp.30-34
    • /
    • 2012
  • The SI thermochemical cycle process accomplishes water splitting through distinctive three chemical reactions. We focused on thermodynamic models applicable to the process. Recently, remarkable models based on the assumed ionic species have been developed to describe highly nonideal behavior on the liquid phase reactions. ElecNRTL models with ionic reactions were proposed in order to provide reliable process simulation results for phase equilibrium calculations in Section II and III. In this study, the current thermodynamic models of SI thermochemical cycle process were briefly described and the calculation results of the applied ElecNRTL models for phase equilibrium calculations were illustrated for binary systems.

  • PDF

Isothermal Age-hardening Behavior in the Commercial Dental Au-Ag-Cu-Pd Alloy (시판 치과용 Au-Ag-Cu-Pd 합금의 등온시효경화거동)

  • Kim, Hyung-Il;Jang, Myoung-Ik;Lee, You-Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 1996
  • The relationship between the isothermal age-hardening behavior and the phase transformation in the commercial dental Au-Ag-Cu-Pd alloy was investigated Age-hardening was mostly attributed to the lattice distortions of the supersaturated w phase resulting from the transformation to the metastable phasel which were more distinct at lower aging temperature. The lattice distortions resulting from the transformation of the metastable phases to the equilibrium phases also made a contribution to the age-hardening.

  • PDF

A Study on the Phase Equilibrium Conditions of Mixture Gas Hydrates using CSMHYD (CSMHYD를 이용한 혼합가스 하이드레이트의 상평형에 대한 연구)

  • Seo, Hyang-Min;Park, Yun-Beom;Chun, Won-Gee;Kim, Nam-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.585-589
    • /
    • 2007
  • Gas hydrate is a special kind of inclusion compound that can be formed by capturing gas molecules to water lattice in high pressure and low temperature conditions. When referred to standard conditions, $1m^3$ solid hydrates contain up to $172Nm^3$ of methane gas, depending on the pressure and temperature of production, Such large volumes make natural gas hydrates can be used to store and transport natural gas. In this study, three-phase equilibrium conditions for forming methane hydrate were theoretically obtained in aqueous single electrolyte solution containing 3wt% Nacl. The results show that Nacl acts as a inhibitor, but help gases such as ethan, propane, i-butane, and n-butane reduce the hydrate formation pressure at the same temperature.

  • PDF

An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem (비점성 평면 정체 유동 응고 문제에 대한 점근적 해석)

  • Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

The prediction of vapor-liquid equilibrium data for 2-methyl-2-propanol-2-butanone system at low pressure (저압하에서 2-methyl-2-propanol-2-butanone계의 기액평형치의 추산)

  • Shim, Hong-Seub;Rhew, Jong-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.97-105
    • /
    • 2004
  • The Vapor-liquid equilibrium data for the binary system of 2-methyl-2-propanol-2-butanone are measured at subatmospheric pressure of 100, 200, 300, 400, 500, 600, 700 and 760 torr. This study shows that the relations between logarithmic values of relative valatility(log ${\alpha}$)and liquid phase composition(${\chi}$) in the above binary systems are expressed as a linear function. When the linear relationships of between logarithmic values of relative volatilities and liquid phase compositions in the binary systems of various pressure intersect at a point, this empirical equation can be applied to the systems of this kind. From these relations the vapor-liquid equilibrium data are estimated and compared with the measured values to be in a good agreement with in accuracy ${\pm}0.0021$ for the various pressure.

  • PDF