• 제목/요약/키워드: Phase Doppler Particle Analyzer (PDPA)

검색결과 84건 처리시간 0.022초

Dimethyl Ether(DME) 연료의 분무 거동 및 미립화 특성 (Macroscopic Behavior and Atomization Characteristics of Dimethyl Ether)

  • 서현규;박지홍;이창식
    • 한국자동차공학회논문집
    • /
    • 제15권5호
    • /
    • pp.30-37
    • /
    • 2007
  • Dimethyl Ether(DME) is an alternative fuel for diesel engine, it is renewable and offers potential reductions in emissions. This work was conducted to figure out the macroscopic behavior and the atomization characteristics of DME using a common-rail injection system. The macroscopic behavior was visualized with the spray visualization system composed of a Nd;YAG laser and an ICCD camera. The atomization characteristics were investigated in terms of axial mean velocity, Sauter mean diameter(SMD) and droplet distributions obtained from a phase Doppler particle analyzer(PDPA) system. In this study, it was revealed that the macroscopic behavior and the atomization characteristics of DME are similar compared with commercial diesel fuel. However, DME fuel has a shorter spray tip penetration and a small SMD due to the effect of evaporation characteristics.

간헐 다공 디젤 분무의 미립화 특성에 관한 실험적 연구 (An Experimental Study on the Atomization Characteristics in an Intermittent Multi-hole Diesel Spray)

  • 이지근;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.27-34
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of the multi-hole diesel nozzle with a 2-spring nozzle holder. Without changing the total orifice exit area, its hole number varied from 3($d_n=0.42mm$) to 8($d_n$=0.25mm). Through the use of the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of the diesel spray injected intermittently from the multi-hole nozzle into the still ambient were measured. And the calculations of time-resolved diameters, SMD and AMD were made. The results can be summarized as follows. The spray of the multi-hole nozzle consisted of three parts. These are the leading edge, the central part and the trailing edge. And most of droplets produced at the trailing edge of spray. In the spray flow field, the measuring position which represented the intermittent spray characteristics well was near the nozzle tip. But at the downstream of the spray, its characteristics disappeared, and spray behavior showed a quasi steady state regardless of the time evolution of the spray. The overall mean SMD of the spray increased with the spray development, and showed their maximum value near 1.5ms regardless of hole number.

  • PDF

Spray Characteristics on the Electrostatic Rotating Bell Applicator

  • Im, Kyoung-Su;Lai, Ming-Chia;Yoon, Suck-Ju
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2053-2065
    • /
    • 2003
  • The current trend in automotive finishing industry is to use more electrostatic rotating bell (ESRB) need space to their higher transfer efficiency. The flow physics related with the transfer efficiency is strongly influenced by operating parameters. In order to improve their high transfer efficiency without compromising the coating quality, a better understanding is necessary to the ESRB application of metallic basecoat painting for the automobile exterior. This paper presents the results from experimental investigation of the ESRB spray to apply water-borne painting. The visualization, the droplet size, and velocity measurements of the spray flow were conducted under the operating conditions such as liquid flow rate, shaping airflow rate, bell rotational speed, and electrostatic voltage setting. The optical techniques used in here were a microscopic and light sheet visualization by a copper vapor laser, and a phase Doppler particle analyzer (PDPA) system. Water was used as paint surrogate for simplicity. The results show that the bell rotating speed is the most important influencing parameter for atomization processes. Liquid flow rate and shaping airflow rate significantly influence the spray structure. Based on the microscopic visualization, the atomization process occurs in ligament breakup mode, which is one of three atomization modes in rotating atomizer. In the spray transport zone, droplets tend to distribute according to size with the larger drops on the outer periphery of spray. In addition, the results of present study provide detailed information on the paint spray structure and transfer processes.

다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향 (Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle)

  • 서현규;김지원;이창식
    • 한국분무공학회지
    • /
    • 제14권1호
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF

An Investigation of Design Parameter and Atomization Mechanism for Air Shrouded Injectors

  • Lee, Ki-Hyung;Lee, Chang-Sik;Kim, Bong-Gyu;Jeong, Hae-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.751-757
    • /
    • 2003
  • With increasing requirements for the less harmful exhaust emissions and the better fuel economy, the conventional injectors in gasoline engines can be replaced by the air shrouded injector in order to provide improved combustion in engine operations. To find out the optimal shape of air shrouded atomizer attached to the conventional injector nozzle, the critical design parameters such as droplet size, fuel and air inlet angles, and injection angles were investigated based on experimental analyses. To explain the characteristics of fuel atomization, these experimental approaches were carried out using a Phase Doppler Particle Analyzer (PDPA) system. The droplet sizes of injected air fuel mixture were obtained by using the beam diffraction phenomenon. In order to improve the atomization effect, the various atomizers were investigated. The Saute. Mean Diameter (SMD) measured at the predetermined locations outside the atomizer represented the performance of fuel atomization. The experimental results show that the design factors and atomization mechanism needed for developing air shrouded injectors. The suggested design parameters in this paper can be a useful reference in the early design stage.

HCCI 디젤엔진 연료적용을 위한 DME 연료 미립화 및 증발특성 (Atomization and Evaporation Characteristics of DME Fuel for the Application of HCCI Diesel Engine)

  • 전문수;황용하;서현규;이창식
    • 한국분무공학회지
    • /
    • 제11권3호
    • /
    • pp.140-146
    • /
    • 2006
  • The objective of this work is to analyze the atomization and evaporation characteristics of dimethyl ether(DME) fuel for the application of HCCI diesel engine. In order to investigate the spray behavior of DME fuel, the macroscopic and microscopic characteristics were investigated in terms of spray development, spray tip penetration, impingement time, SMD, and axial mean velocity under the various injection timing and ambient conditions. For the illumination of spray, the spray visualization system was composed of a Nd:YAG laser and an ICCD camera and laser-sheet method was used. The atomization characteristics of DME fuel are analyzed by using phase Doppler particle analyzer (PDPA) system It was reveal that the spray development of DME is slower and rapidly disappeared as elapsed time after start of injection at the same injection duration. The impingement timing of diesel fuel was fester than that of DME fuel. The comparison of spray atomization characteristics in both fuels shows that diesel fuel has a large SMD value that DME.

  • PDF

PRESSURE MODULAION ON MICRO-MACHINED PORT FUEL INJECTOR PERFORMANCE

  • Kim, H.;Im, K.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권1호
    • /
    • pp.9-16
    • /
    • 2004
  • An experimental study was carried out to characterize the spray atomization process of micro-machined port fuel injectors with a piezoelectric atomization device, which can generate pressure pulsations through vibration of a piezoelectric transducer. In this study, several types of micro-machined arrays such as 30∼200-microns of hole arrays were tested. Both a dual-stream and a central-port injectors with micro-machined arrays were tested and compared with normal port fuel injectors. The spray visualization was conducted to characterize overall spray structure and phase Doppler particle analyzer (PDPA) system was used to quantify the droplet size and velocity. In addition, the pressure history was recorded by using digitized signal from pressure transducer. The results showed that modulation is effective to the spray atomization for tested injectors and atomization performance depends on injector design factors, orifice sizes, and frequency and power of the modulator. A number of resonance frequencies of the modulator was modified by injector parameters and temperature. In addition, our results suggested that design of sufficient space among holes is critical to avoid droplet coalescence in the multi-hole micro-machined injectors.

Recess Effects on Spray Characteristics of Swirl Coaxial Injectors

  • Seol, J.H.;Han, P.G.;Jeong, W.H.;Yoon, Y.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제4권1호
    • /
    • pp.26-33
    • /
    • 2003
  • Recess is a geometrical configuration shape that the exit surface of an inner injector is located at a certain length inward from that of an outer injector. It is known to have the characteristics that it can augment mixing efficiency and flame stabilization through internal mixing of propellant in it. So, various experiments, such as backlit stroboscopic photography, phase Doppler particle analyzer(PDPA) and mechanical patternator, were performed at several recess lengths to grasp its effect on the spray characteristics of spray angle, breakup length, atomization and' mixing. Recess length was normalized to dimensionless recess number and two principal mechanisms of impingement and swirl recovery were introduced to explain its influence on the spray characteristics. The effect of recess on SMD doesn't appear significantly near the recess number where mixing efficiency attains to the maximum, whereas mass distribution and mixing efficiency are changed considerably. Thus, it can be inferred that a certain optimum recess number exists, where mixing efficiency becomes the maximum.

단열식 회전연료 노즐의 오리피스 직경에 따른 분무특성 연구 (A Study of Spray Characteristic with Orifice Diameter for Single Column Rotating Fuel Nozzle)

  • 장성호;최성만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.253-256
    • /
    • 2009
  • 350Kw급 이하의 초소형 터보제트엔진에서 연료 미립화 특성을 만족하는 분사시스템을 개발하는 것은 매우 어려운 일이다. 그러나 회전 연료 분사시스템은 복잡한 고압연료펌프 시스템 없이도 엔진축의 원심력만을 이용함으로써 좋은 미립화를 할 수 있다. 이러한 이유로, 직경 40 mm의 매우 작은 회전식 연료 인젝터를 제작하였으며, 여러 가지 크기의 분사 오리피스에 대한 실험을 수행하였다. PDPA 측정 시스템을 사용하여 입자의 크기와 속도, 분무분포를 측정하였다. 실험 결과, 분사 오리피스로부터 분출된 단일 액주의 길이는 회전속도에 의해 제어되며, SMD는 회전수가 증가함에 따라 감소하고, 오리피스의 직경과 오리피스 내부에 생성되는 액막두께에 큰 영향을 받는다.

  • PDF

Atomization Characteristics in Pneumatic Counterflowing Internal Mixing Nozzle

  • Lee, Sam-Goo;Rho, Byung-Joon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권10호
    • /
    • pp.1131-1142
    • /
    • 2000
  • In an effort to illustrate the global variation of SMD (Sauter mean diameter, or $D_{32}$) and AMD (Arithmetic mean diameter, or $D_{10}$) at five axial downstream locations (i. e., at Z=30, 50, 80, 120, and 170 mm) under the different experimental conditions, the radial coordinate is normalized by the spray half-width. Experimental data to analyze the atomization characteristics concerning with an internal mixing type have been obtained using a PDPA(Phase Doppler Particle Analyzer). The air injection pressure was varied from 40 kPa to 120 kPa. In this study, counterflowing internal mixing nozzles manufactured at an angle of $15^{\circ}$with axi-symmetric tangential-drilled four holes have been considered. By comparing the results, it is clearly possible to discern the effects of increasing air pressure, suggesting that the disintegration process is enhanced and finer spray droplets can be obtained under higher air assist. The variations in $D_{32}$ are attributed to the characteristic feature of internal mixing nozzle in which the droplets are preferentially ejected downward with strong axial momentum, and dispersed with the larger droplets which are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup by higher shear stresses at farther axial locations. The poor atomization around the centre close to the nozzle exit is attributed to the fact that the relatively lower rates of spherical particles are detected and these drops are not subject to instantaneous breakup in spite of the strong axial momentum. However, substantial increases in SMD from the central part toward the edge of the spray as they go farther downstream are mainly due to the fact that the relative velocity of droplet is too low to cause any subsequent disintegration.

  • PDF