• Title/Summary/Keyword: Phase Coherence

Search Result 143, Processing Time 0.024 seconds

Topological Interference Cancellation Using 5 Prime Substances (오행(五行)을 이용한 위상 간섭 제거)

  • Park, Ju-Youg;Kim, Jeoug-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.83-89
    • /
    • 2016
  • In this paper, we apply the complementation principle of five prime substances to reduce the phase interference. The transmitter and receiver match the concepts of co-operative and conflict to the direct and indirect signals. The result shows we investigate the proposed network topology such as 5 prime substances (5 user networks). The key observation is that optimal symmetric degree of freedom (DoF) can be achieved for 5 user network with different channel coherence times by adaptively selecting the interference alignment scheme via controlling the alignment feasibility of the transmitted signals. Theoretical results demonstrate the effectiveness of the proposed 5 user networks are well matched to the wireless mobile channel environment to achieve the symmetric DoF for different channel coherence times which ensures that the proposed networks are applicable for dense wireless network applications. Modulo 3 functionality in 5 user network topology makes it easier for the transmitter cooperation to achieve the DoF of 2/3 with the help of the interference alignment schemes.

Micro Vibration Measurement in a Latex Sample Mimicking the Tympanic Membrane Using Micro Vibro Tomography (고막을 모방한 라텍스 샘플의 미세진동 측정을 위한 마이크로 바이브로 토모그라피 시스템 개발)

  • Kwon, Jaehwan;Kim, Pilun;Jeon, Mansik;Kim, Jeehyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.23-27
    • /
    • 2019
  • In this paper, we propose a micro vibro tomography(MVT) method, that can be used to visualize two-dimensional cross-sectional images and micro-vibration tomographic images in real time in a non-contact and non-destructive manner. The proposed method is based on the optical coherence tomography(OCT) technique, with an additionally customized image processing algorithm. The proposed method can detect the micro-motions or vibrations in sample structures by measuring the phase shift variations in the sample structures. In this study, we show the potential capabilities of the proposed MVT system for measuring the micro-vibrations generated when sound waves in a frequency range of 2~5 kHz are applied to an $80-{\mu}m$ thick latex phantom, which mimics the changes in physical structure of the human tympanic membrane while hearing. Additionally, three-dimensional volumetric images of the MVT method were recorded to observe the surface morphological changes in the surface of the phantom sample which mimics the human tympanic membrane while hearing.

The Identification of Generation Mechanism of Noise and Vibrtaion and Transmission Characteristics for Engine System - The Source Identification and Noise Reduction of Compartment by Multidimensional Spectral Analysis and Vector Synthesis Method - (엔진의 소음.진동발생기구 및 전달특성 규명 -다차원해석법과 벡터합성법에 의한 차실소음원 규명 및 소음저감 -)

  • O, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1127-1140
    • /
    • 1997
  • With the study for identifying the transmission characteristics of vibration and noise generated by operating engine system of a vehicle, recently many engineers have studied actively the reduction of vibration and noise inducing uncomfortableness to the passenger. In this study, output noise was analyzed by multi-dimensional spectral analysis and vector synthesis method. The multi-dimensional analysis method is very effective in case of identification of primary source, but this method has little effect on suggestion for interior noised reduction. For compensation of this, vector synthesis method was used to obtain effective method for interior noise reduction, after identifying primary source for output noise. In this paper, partial coherence function of each input was calculated to know which input was most coherent to output noise, then with simulation of changes for input magnitude and phase by vector synthesis diagram, the trends of synthesized output vector was obtained. As a result, the change of synthesized output vector could be estimated.

SPECIAL CONSIDERATION ON THE RADARSAT REPEAT-PASS SAR INTERFEROMETRY

  • Kim, Sang-Wan;Won, Joong-Sun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.474-478
    • /
    • 1999
  • SAR interferometry (InSAR) using the space-borne Synthetic Aperture Radar (SAR) have recently become one of the most effective tools monitoring surface changes caused by landslides, earthquakes, subsidences or volcanic eruption. This study focuses on examining the feasibility of InSAR using the RADARSAT data. Although the RABARSAT SAR with its high resolution and variable incidence angle has several advantages for repeat-pass InSAR, it has two key limitations: first, the orbit is not precisely known; and second, RADARSAT's 24-day repeat pass interval is not very favourable for retaining useful coherence. In this study, two pairs of RADARSAT data in the Nahanni area, NWT, Canada have been tested. We will discuss about the special consideration required on the interferometric processing steps specifically for RADARSAT data including image co-registration, spectral filtering in both azimuth and range, estimation of the interferometric baseline, and correction of the interferogram with respect to the "flat earth" phase contribution. Preliminary results can be summarized as: i) the properly designed azimuth filter based upon the antenna characteristic improves coherence considerably if difference in Doppler centroid of the two images is relatively large; ii) the co-registration process combined by fringe spectrum and amplitude cross-correlation techniques results in optimal matching; iii) the baseline is not always possible to be estimated from the definitive orbit information.

  • PDF

The Application of InSAR Signature Time Series for Landcover Classification (InSAR Signature 시계열 분석을 통한 토지피복분류)

  • Yun, Hye Won;Choi, Yun Soo;Yoon, Ha Su;Ko, Jong Sik;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.22 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Considering the wide coverage, the transparency from climate condition, Interferometric Synthetic Aperture Radar (InSAR) possesses a great potential for the landcover classification as shown in many precedent researches. In addition to the merits of InSAR products for the landcover classification, the time series analysis of InSAR pairs can provide a highly reliable basis to interpret landcover. We applied such idea with the test site in Mountain Baekdu located on the border between North Korea and China. Since it is recently noted as the potential volcanic activation site, the landcover especially the vegetation distribution information is highly essential to validate the reliability of Differential Interferometric Synthetic Aperture Radar (DInSAR) over Mt. Baekdu. The algorithms combining the auxiliary information from Moderate Resolution Imaging Spectroradiometer (MODIS) to analyze the phase coherence and backscatter coefficient of Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) was established. The results using InSAR signatures from two polarization modes of ALOS PALSAR showed high reliability for mining landcover and spatial distribution.

Search for the preformed-pair state in the pseudogap regime above T$_c$ using c-axis tunneling in Bi$_2$Sr$_2$CaCu$_2$O$_{8+d}$ single crystals

  • Chang, Hyun-Sik;Lee, Hu-Jong;Oda, MigaKu;Jang, Eue-Soon;Ido, Masayuki;Choy, Jin-Ho
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.85-85
    • /
    • 2000
  • The normal state of high-Tc superconducting materials has been believed to contain important clues to finding the correct mechanism of the high-Tc superconductivity. One example is the existence of pseudogap in the normal state even above Tc, as observed in various measurements such as photoemission spectroscopy and tunneling conductance. In this pseudogap regime the existence of preformed pairs only with local phase coherence has been debated. Recently Choi, Bang, and Campbell[1] have proposed the occurrence of the zero-bias conductance enhancement due to Andreev quasiparticle reflection from the preformed pairs even with the local phase coherence. In this study we examine the zero-bias enhancement of the differential conductance near or slightly above Tc, using c-axis tunneling in mesa structure of Bi2Sr20a0u208+d single crystals. In slightly overdoped samples zero-bias conductance enhancement (ZBCE) has been observed over a range of 2 K above Tc. In contrast, in underdoped samples with Tc${\sim}$72K the ZBCE appears over a range of 5-6 K above Tc, a much wider temperature range than in overdoped samples. This result may pose as positive signs of the existence of prefurmed pairs in the normal state of high- Tc superconducting materials.

  • PDF

Performance Analysis of Modulator using Direct Digital Frequency Synthesizer of Initial Clock Accumulating Method (클록 초기치 누적방식의 직접 디지털 주파수 합성기를 이용한 변조기의 성능해석)

  • 최승덕;김경태
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.128-133
    • /
    • 1998
  • This paper is study on performance analysis of modulator using direct digital frequency synthesizer of Initial Clock Accumulating Method. It has been generally used for PLL or digital frequency synthesizing method to be synthesizd randomly chosen frequency state. In order to improve disadvantage of two methods, we constructed modulator system using DDFS of Initial Clock Accumulating Method. We also confirmed the coherence frequency hopping state and possibility of phase control. The results obtained from the experiments are as follows; First, the synthesized output frequency is proportional to the sampling frequency, according to index, K. Second, the difference of the gain between the basic frequency and the harmonic frequencies was more than 50 [dB], that is, this means facts that is reduced the harmonic frequency factor. Third, coherence frequency hopping state is confirmed by PN code sequence. Here, we confirmed the proposed method cut switching time, this verify facts that is the best characteristic of the frequency hopping. We also verified the fact that the phase varies as the adder is operated set or reset.

  • PDF

A Technique for Generation of Template Signal using Stable Minimum-Phase ARMA System Modeling for Coherent Impulse Communication Systems (안정성을 갖는 최소 위상 ARMA시스템 모델링을 이용한 코히어런트 임펄스 통신 수신단 참조 신호 발생 기법)

  • Lee Won Cheol;Park Woon Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1606-1616
    • /
    • 2004
  • This paper introduces a technique for generating an appropriate template signal via modeling of minimum-phase stable ARMA (Auto-Regressive Moving Average) system for coherent impulse communication systems. It has been well known that the transmitted impulse signal becomes deformed because of dispersive and resonant characteristics. Accordingly, in spite of using ideal template signal at the correlator, these impairments degrade overall performance attributed to low level of coherence. To increase the degree of coherence, our proposed scheme realizes A3U system derived by Gaussian pulse signal, which simulates the overall characteristic of transfer function in between transmit and receive wideband antennas so as to generate an appropriate template signal in a form of output. The performance of proposed scheme will be shown in results from computer simulations to verify its affirmative impact on impulse communication system with regarding several distinctively shaped antennas.

Development of Wideband Frequency Modulated Laser for High Resolution FMCW LiDAR Sensor (고분해능 FMCW LiDAR 센서 구성을 위한 광대역 주파수변조 레이저 개발)

  • Jong-Pil La;Ji-Eun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1023-1030
    • /
    • 2023
  • FMCW LiDAR system with robust target detection capabilities even under adverse operating conditions such as snow, rain, and fog is addressed in this paper. Our focus is primarily on enhancing the performance of FMCW LiDAR by improving the characteristics of the frequency-modulated laser, which directly influence range resolution, coherence length, and maximum measurement range etc. of LiDAR. We describe the utilization of an unbalanced Mach-Zehnder laser interferometer to measure real-time changes of the lasing frequency and to correct frequency modulation errors through an optical phase-locked loop technique. To extend the coherence length of laser, we employ an extended-cavity laser diode as the laser source and implement a laser interferometer with an photonic integrated circuit for miniaturization of optical system. The developed FMCW LiDAR system exhibits a bandwidth of 10.045GHz and a remarkable distance resolution of 0.84mm.

KVN Performance Evaluation of Simultaneous 4CH Observations

  • Jung, Dawoon;Sohn, Young-Jong;Byun, Do-Young;Jung, Taehyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2016
  • It is important to know how well observation errors are removed in the calibration process prior to ensuing scientific research. In mm-VLBI observations, a radio wave suffers from an atmospheric propagation delay due to the rapid change of atmospheric refraction. It makes phases of VLBI correlation output fluctuate rapidly, which essentially decreases the coherence of phases and reduces the integration time. Consequently, it is challenging to achieve a high signal-to-noise ratio and enhance the quality of scientific output. Among the causes of the atmospheric propagation delay, water vapor in the troposphere is the most decisive factor to affect phase errors in the high frequency range (> 10GHz). It is expected to have the non-dispersive characteristic that enables to introduce new calibration strategy, Frequency Phase Transfer (FPT). This new method utilizes low frequency phases to compensate phase errors in high frequency bands. In addition, Korean VLBI Network (KVN) which benefits from the simultaneous 4-channels (22/43/86/129 GHz) observations is ideal to probe FPT performance. In order to evaluate FPT performance of KVN, we present the results of FPT phase analysis and discuss its performance.

  • PDF