• Title/Summary/Keyword: Phase Array Antenna

Search Result 245, Processing Time 0.022 seconds

Averaging Methods for Enhancing the Performance of DOA Estimation Under the Rotor Effect (로터 영향 하에서의 DOA 추정 성능 개선을 위한 평균화 방법)

  • Yun, Seonhui;Oh, Jongchan;Kim, Jun O;Choi, Sangwook;Ahn, Jae Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1245-1255
    • /
    • 2012
  • There are various anti-jamming algorithms for the GNSS system which is vulnerable to jamming, and the methods using array antenna show the best performance. Among them, the DOA estimation algorithms to identify the location of the jammer is very important. However, in case of the rotorcraft, the wireless channel which amplitude and phase changes with time is generated by the rotation of the rotor and it affects the performance of existing anti-jamming algorithms. In this paper, we modeled the effect of the rotor in four scenarios according to the correlation of antennas and assured that the performance of DOA estimation algorithms are degraded and saturated regardless of JNR due to the rotor effect. When we use the averaging method to solve this problem, the performance is improved as increasing samples for estimating. And in case of using moving average method with averaging, it shows similar performance. In addition, it reduces the required memory and moderates the variation of DOA estimation.

Design of 24-GHz 1Tx 2Rx FMCW Transceiver (24 GHz 1Tx 2Rx FMCW 송수신기 설계)

  • Kim, Tae-Hyun;Kwon, Oh-Yun;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.758-765
    • /
    • 2018
  • This paper presents a 24-GHz frequency-modulated continuous wave(FMCW) radar transceiver with two Rx and one Tx channels in 65-nm complementary metal-oxide-semiconductor(CMOS) process and implemented it on a radar system using the developed transceiver chip. The transceiver chip includes a $14{\times}$ frequency multiplier, low-noise amplifier, down-conversion mixer, and power amplifier(PA). The transmitter achieves >10 dBm output power from 23.8 to 24.36 GHz and the phase noise is -97.3 GHz/Hz at a 1-MHz offset. The receiver achieves 25.2 dB conversion gain and output $P_{1dB}$ of -31.7 dBm. The transceiver consumes 295 mW of power and occupies an area of $1.63{\times}1.6mm^2$. The radar system is fabricated on a low-loss Duroid printed circuit board(PCB) stacked on the low-cost FR4 PCBs. The chip and antenna are placed on the Duroid PCB with interconnects and bias, gain blocks and FMCW signal-generating circuitry are mounted on the FR4 PCB. The transmit antenna is a $4{\times}4$ patch array with 14.76 dBi gain and receiving antennas are two $4{\times}2$ patch antennas with a gain of 11.77 dBi. The operation of the radar is evaluated and confirmed by detecting the range and azimuthal angle of the corner reflectors.

X-Band 6-Way Waveguide Power Divider Using Inductive Post (유도성 포스트를 활용한 X-Band 6-Way 도파관 전력 분배기)

  • Kim, Dong-Hyun;Oh, Soon-Soo;Min, Kyeong-Sik;Kang, Suk-Youb
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.417-426
    • /
    • 2010
  • This paper describes the 6-way power divider to be used as a feeding structure of the waveguide array antenna generating the plane wave at the near distance. The SMA connector has been connected at the center of the power divider in order to feed the radiating element. The six output ports made of waveguide are positioned on the peripheral of the divider. This paper proposes the method utilizing the inductive post in order to decrease the return loss. The height of the feeding pin, the diameter of the inductive post, and the distance between the feeding pin and inductive post have been investigated, and as a result, the power divider has been optimized. The simulated and measured results show the low return loss of about -40 dB. The calculated and measured transmission coefficients are -7.78 dB and -8.06 dB, respectively. The output power of the six waveguide port show equal-amplitude and equal-phase distribution. Since the power divider proposed in this paper can be expanded to the divider having several output ports, it could be easily applied to the various array antennas.

Design and Implementation of High Efficiency Transceiver Module for Active Phased Arrays System of IMT-Advanced (IMT-Advanced 능동위상배열 시스템용 고효율 송수신 모듈 설계 및 구현)

  • Lee, Suk-Hui;Jang, Hong-Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.26-36
    • /
    • 2014
  • The needs of active phased arrays antenna system is getting more increased for IMT-Advanced system efficiency. The active phased array structure consists of lots of small transceivers and radiation elements to increase system efficiency. The minimized module of high efficiency transceiver is key for system implementation. The power amplifier of transmitter decides efficiency of base-station. In this paper, we design and implement minimized module of high efficiency transceiver for IMT-Advanced active phased array system. The temperature compensation circuit of transceiver reduces gain error and the analog pre-distorter of linearizer reduces implemented size. For minimal size and high efficiency, the implented power amplifier consist of GaN MMIC Doherty structure. The size of implemented module is $40mm{\times}90mm{\times}50mm$ and output power is 47.65 dBm at LTE band 7. The efficiency of power amplifier is 40.7% efficiency and ACLR compensation of linearizer is above 12dB at operating power level, 37dBm. The noise figure of transceiver is under 1.28 dB and amplitude error and phase error on 6 bit control is 0.38 dB and 2.77 degree respectively.

A Design and Fabrication of a Compact Ka Band Transmit/Receive Module Using a Quad-Pack (쿼드팩을 이용한 소형 Ka 대역 송수신(T/R) 모듈의 설계 및 제작)

  • Oh, Hyun-Seok;Yeom, Kyung-Whan;Chong, Min-Kil;Na, Hyung-Gi;Lee, Sang-Joo;Lee, Ki-Won;Nam, Byung-Chang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.3
    • /
    • pp.389-398
    • /
    • 2011
  • In this paper, the design and fabrication of a transmit/receive(T/R) module for Ka-band phased array radar is presented. A 5bit digital phase shifter and digital attenuator were used in common for both transmitter and receiver considering unique Ka-band characteristic. The circulator was excluded in the T/R module and was placed outside T/R module. The transmitting power per element antenna is designed to be about 1 W and the noise figure is designed to be below 8 dB. The designed T/R module RF part has a compact size of $5\;mm{\times}4\;mm{\times}57\;mm$. In order to implement the T/R module, MMICs used in T/R module was separately assessed before assembly of the designed T/R module. The transmitter of the fabricated T/R module shows about 1 W at 5 dBm unit module input power and the receiver shows a gain of about 20 dB and a noise figure of below 8 dB as expected in the design stage.