• 제목/요약/키워드: Pharmacological mechanisms

검색결과 293건 처리시간 0.024초

Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions

  • Yang, Yanyan;Lee, Jongsung;Rhee, Man Hee;Yu, Tao;Baek, Kwang-Soo;Sung, Nak Yoon;Kim, Yong;Yoon, Keejung;Kim, Ji Hye;Kwak, Yi-Seong;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.61-68
    • /
    • 2015
  • Background: Korean Red Ginseng (KRG) is a representative traditional herbal medicine with many different pharmacological properties including anticancer, anti-atherosclerosis, anti-diabetes, and anti-inflammatory activities. Only a few studies have explored the molecular mechanism of KRG-mediated anti-inflammatory activity. Methods: We investigated the anti-inflammatory mechanisms of the protopanaxadiol saponin fraction (PPD-SF) of KRG using in vitro and in vivo inflammatory models. Results: PPD-SF dose-dependently diminished the release of inflammatory mediators [nitric oxide (NO), tumor necrosis factor-${\alpha}$, and prostaglandin $E_2$], and downregulated the mRNA expression of their corresponding genes (inducible NO synthase, tumor necrosis factor-${\alpha}$, and cyclooxygenase-2), without altering cell viability. The PPD-SF-mediated suppression of these events appeared to be regulated by a blockade of p38, c-Jun N-terminal kinase (JNK), and TANK (TRAF family member-associated NF-kappa-B activator)-binding kinase 1 (TBK1), which are linked to the activation of activating transcription factor 2 (ATF2) and interferon regulatory transcription factor 3 (IRF3). Moreover, this fraction also ameliorated HCl/ethanol/-induced gastritis via suppression of phospho-JNK2 levels. Conclusion: These results strongly suggest that the anti-inflammatory action of PPD-SF could be mediated by a reduction in the activation of p38-, JNK2-, and TANK-binding-kinase-1-linked pathways and their corresponding transcription factors (ATF2 and IRF3).

귀전우(鬼箭羽)의 in vitro 및 in vivo에서의 염증억제효과 (Anti-inflammatory effect of Euonymi Lignum Suberalatum in LPS-activated Raw 264.7 cells and CA-induced paw edema rat model)

  • 전창권;박상미;박정아;변성희;김상찬
    • 대한한의학방제학회지
    • /
    • 제27권2호
    • /
    • pp.101-120
    • /
    • 2019
  • PURPOSE : Euonymi Lignum Suberalatum (EL) is the stem fin of Euonymi alatus. In traditional Korean medicine, EL is used for treatment of uterine bleeding, metritis and static blood. Recently, many studies have reported several pharmacological effects of EL including anticancer, antimicrobial, antidiabetic activity, and anti-oxidative stress. However, the mechanisms underlying anti-inflammatory effects by the EL is not established. METHODS : To investigate anti-inflammatory effects of Euonymi Lignum Suberalatum Water (ELWE), Raw 264.7 cells were pre-treated with $10-300{\mu}g/mL$ of ELWE, and then exposed to $1{\mu}g/mL$ of LPS. Levels of NO, IL-6, $IL-1{\beta}$ and $TNF-{\alpha}$ were detected by ELISA kit. Expression of pro-inflammatory proteins were determined by immunoblot analysis. To evaluate the anti-inflammatory effect in vivo, rat paw edema volume, and expressions of COX-2 and iNOS proteins in carrageenan (CA)-induced rat paw edema model. RESULTS : NO production activated by LPS, was decreased by $30-300{\mu}g/mL$ of ELWE. Production of inflammatory mediators such as $TNF-{\alpha}$, ILs, $PGE_2$ were decreased by ELWE 100 and $300{\mu}g/mL$. In addition, ELWE reduced LPS-mediated iNOS and COX-2 expression. Moreover, ELWE increased $I-{\kappa}B{\alpha}$ expression in cytoplasm and decreased $NF-{\kappa}B$ expression in nucleus. In vivo study, ELWE reduced the increases of paw swelling, and expression of iNOS and COX-2 proteins in paw edema induced by CA injection. CONCLUSION : The results indicate that ELWE could inhibit the acute inflammatory response, via modulation of $NF-{\kappa}B$ activation. Furthermore, inhibition of rat paw edema induced by CA is considered as clear evidence that ELWE may be a useful source to treat acute inflammation.

Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models

  • Chen, Ying-Jie;Wu, Jia-Ying;Deng, Yu-Yi;Wu, Ying;Wang, Xiao-Qi;Li, Amy Sze-man;Wong, Lut Yi;Fu, Xiu-Qiong;Yu, Zhi-Ling;Liang, Chun
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.418-425
    • /
    • 2022
  • Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, overactivation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.

Whitening and inhibiting NF-κB-mediated inflammation properties of the biotransformed green ginseng berry of new cultivar K1, ginsenoside Rg2 enriched, on B16 and LPS-stimulated RAW 264.7 cells

  • Xu, Xing Yue;Yi, Eun Seob;Kang, Chang Ho;Liu, Ying;Lee, Yeong-Geun;Choi, Han Sol;Jang, Hyun Bin;Huo, Yue;Baek, Nam-In;Yang, Deok Chun;Kim, Yeon-Ju
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.631-641
    • /
    • 2021
  • Background: Main bioactive constituents and pharmacological functions of ripened red ginseng berry (Panax ginseng Meyer) have been frequently reported. Yet, the research gap targeting the beneficial activities of transformed green ginseng berries has not reported elsewhere. Methods: Ginsenosides of new green berry cultivar K-1 (GK-1) were identified by HPLC-QTOF/MS. Ginsenosides bioconversion in GK-1 by bgp1 enzyme was confirmed with HPLC and TLC. Then, mechanisms of GK-1 and β-glucosidase (bgp1) biotransformed GK-1 (BGK-1) were determined by Quantitative Reverse Transcription-Polymerase Chain Reaction and Western blot. Results: GK-1 possesses highest ginsenosides especially ginsenoside-Re amongst seven ginseng cultivars including (Chunpoong, Huangsuk, Kumpoong, K-1, Honkaejong, Gopoong, and Yunpoong). Ginseng root's biomass is not affected with the harvest of GK-1 at 3 weeks after flowering period. Then, Re is bioconverted into a promising pharmaceutical effect of Rg2 via bgp1. According to the results of cell assays, BGK-1 shows decrease of tyrosinase and melanin content in α-melanocyte-stimulating hormone challenged-murine melanoma B16 cells. BGK-1 which is comparatively more effective than GK-1 extract shows significant suppression of the nuclear factor (NF)-κB activation and inflammatory target genes, in LPS-stimulated RAW 264.7 cells. Conclusion: These results reported effective whitening and anti-inflammatory of BGK-1 as compared to GK-1.

Allomyrina dichotoma larva extract attenuates free fatty acid-induced lipotoxicity in pancreatic beta cells

  • Kim, Kyong;Kwak, Min-Kyu;Bae, Gong-Deuk;Park, Eun-Young;Baek, Dong-Jae;Kim, Chul-Young;Jang, Se-Eun;Jun, Hee-Sook;Oh, Yoon Sin
    • Nutrition Research and Practice
    • /
    • 제15권3호
    • /
    • pp.294-308
    • /
    • 2021
  • BACKGROUD/OBJECTIVES: Allomyrina dichotoma larva (ADL), one of the many edible insects recognized as future food resources, has a range of pharmacological activities. In a previous study, an ADL extract (ADLE) reduced the hepatic insulin resistance of high-fat diet (HFD)-induced diabetic mice. On the other hand, the associated molecular mechanisms underlying pancreatic beta-cell dysfunction remain unclear. This study examined the effects of ADLE on palmitate-induced lipotoxicity in a beta cell line of a rat origin, INS-1 cells. MATERIALS/METHODS: ADLE was administered to high-fat diet treated mice. The expression of apoptosis-related molecules was measured by Western blotting, and reactive oxidative stress generation and nitric oxide production were measured by DCH-DA fluorescence and a Griess assay, respectively. RESULTS: The administration of ADLE to HFD-induced diabetic mice reduced the hyperplasia, 4-hydroxynonenal levels, and the number of apoptotic cells while improving the insulin levels compared to the HFD group. Treatment of INS-1 cells with palmitate reduced insulin secretion, which was attenuated by the ADLE treatment. Furthermore, the ADLE treatment prevented palmitate-induced cell death in INS-1 cells and isolated islets by reducing the apoptotic signaling molecules, including cleaved caspase-3 and PARP, and the Bax/Bcl2 ratio. ADLE also reduced the levels of reactive oxygen species generation, lipid accumulation, and nitrite production in palmitate-treated INS-1 cells while increasing the ATP levels. This effect corresponded to the decreased expression of inducible nitric oxide synthase (iNOS) mRNA and protein. CONCLUSIONS: ADLE helps prevent lipotoxic beta-cell death in INS-1 cells and HFD-diabetic mice, suggesting that ADLE can be used to prevent or treat beta-cell damage in glucose intolerance during the development of diabetes.

당귀(當歸) 추출물이 피부 각질형성세포의 염증반응에 미치는 영향 (Effect of Angelicae Gigantis Radix for Inflammatory Response in HaCaT Cells)

  • 허정;박호연;김엄지;김은영;손영주;정혁상
    • 대한본초학회지
    • /
    • 제37권3호
    • /
    • pp.9-19
    • /
    • 2022
  • Objectives : Angelicae Gigantis Radix (AG) is a plant of the Ranunculus family. AG have been reported to have various pharmacological effects on human health which include uterine growth promotion, anti-inflammatory, analgesic, and immune enhancement. However, research on dermatitis disease is insufficient. Therefore, we investigated the effects of AG on tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) stimulated HaCaT cell. Methods : To investigate the effect of AG on HaCaT cell, HaCaT cells were pre-treated with AG for 1 hour and then stimulated with TNF-α/IFN-γ. After 24 hours, media and cells were harvested to analyze the inflammatory mediators. Concentration of human interleukin-1beta (IL-1β), monocyte chemoattractant protein-1 (MCP-1), granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-α in the media were assessed by ELISA. mRNA expression of human thymus and activation-regulated chemokine (TARC), IL-6, and IL-8 were analyzed by RT-PCR. Additionally, the mechanisms of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway were investigated by Western blot. Results : The treatment of AG inhibited gene expression levels of IL-6, IL-8, and TARC and protein expression levels of IL-1β, MCP-1, and GM-CSF. Also, AG significantly reduced extracellular signal-regulated kinase (ERK) phosphorylation and NF-κB translocation in TNF-α/IFN-γ stimulated HaCaT cell. Conclusions : Taken together, these results demonstrate that AG can alleviate inflammatory diseases such as atopic dermatitis by regulating the expression of inflammatory cytokines. Also, it suggest that AG may a promising candidate drug for the treatment of inflammatory disease such as atopic dermatitis.

LPS로 자극한 RAW 264.7 세포에서 염증성세포활성물질 생산에 미치는 도적산(導赤散) 물 추출의 억제 효과 (Inhibitory Effect of Water Extract from Dojuksan on LPS-induced Proinflammatory Cytokines Production in RAW 264.7 Cells)

  • 김지은;김성배;강옥화;신인식;강석훈;이승호;권동렬
    • 대한본초학회지
    • /
    • 제28권3호
    • /
    • pp.53-60
    • /
    • 2013
  • Objectives : DojukSan is known to be effective for treating a urinary diseases and stomatitis. However, there has been a lack of studies regarding the effects of Dojuksan on the inflammatory activities and effector inflammatory disease mechanism about macrophage before is not known. To elucidate the molecular mechanisms of Dojuksan water extract (DJS) on pharmacological and biochemical actions in inflammation, we examined the effect of DJS on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay, reverse transcription polymerase chain reaction, and western blot analysis to measure the activation of MAPKs. Cells were treated with 200 ng/mL of LPS 1 h prior to the addition of DJS. Cell viability was measured by MTS assay. The investigation focused on whether DJS inhibited nitric oxide (NO) and prostaglandin E2 ($PGE_2$) productions, as well as the expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and mitogen-activated protein kinases (MAPKs) in LPS-stimulated RAW 264.7 cells. Results : We found that DJS inhibited LPS-induced NO, $PGE_2$ and IL-6 productions as well as the expressions of iNOS and COX-2. Furthermore, DJS suppressed the LPS-induced phosphorylation of p38 MAPK and c-Jun NH2-protein kinase (JNK). Conclusions : These results suggest that DJS has inhibitory effects on LPS-induced $PGE_2$, NO, and IL-6 production, as well as the expressions of iNOS and COX-2 in the murine macrophage. These inhibitory effects occur through blockades on the MAPKs phosphorylation.

Human mast cell에서 승마갈근탕(升麻葛根湯)의 항염증 효과에 대한 연구 (Anti-inflammatory effect of Seungmagalgeun-tang extract in human mast cells)

  • 금준호;서윤수;강옥화;최장기;권동렬
    • 대한본초학회지
    • /
    • 제28권5호
    • /
    • pp.7-11
    • /
    • 2013
  • Objectives : Seungmagalgeun-tang (SMGGT) is traditional medicine widely used for inflammatory disease and flu. But SMGGT exhibits potent anti-inflammatory activity with an unknown mechanism. To elucidate the molecular mechanisms of SMGGT water extract on pharmacological and biochemical actions in inflammation, we examined the effect of SMGGT on pro-inflammatory mediators in Phorbol-12-myristate-13-acetate (PMA)+A23187-stimulated mast cells. Methods : In the present study, pro-inflammatory cytokine production was determined by performing enzyme-linked immunosorbent assay (ELISA), reverse transcription polymerase chain reaction (RT-PCR), and western blot analysis to measure the activation of MAPKs. Cells were treated with SMGGT 1 h prior to the addition of 50 nM of PMA and $1{\mu}M$ of A23187. Cell viability was measured by MTS assay. The investigation focused on whether SMGGT inhibited the expressions of interleukin-6 (IL-6), interleukin-8 (IL-8) and mitogen-activated protein kinases (MAPKs) in PMA+A23187-stimulated mast cells. Results : SMGGT has no cytotoxicity at examined concentration (100, 250, and $500{\mu}g/ml$). Also, gene expression of IL-6 and IL-8 in HMC-1 cells stimulated by PMA+A23187 was down regulated by SMGGT. Furthermore, SMGGT suppressed the PMA+A23187-induced phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun N-terminal Kinase(JNK). But, SMGGT could not regulate phosphorylation of p38 MAPK. Conclusions : These results suggest that SMGGT has inhibitory effects on PMA+A23187-induced IL-6 and IL-8 production. These inhibitory effects occur through blockades on the phosphorylation of ERK and JNK.

THP-1 단핵구의 펩티도글리칸 유래 인터루킨-1 알파 발현에서 TLR2, PI3K/Akt/mTOR, MAPKs의 역할 (Involvement of Multiple Signaling Molecules in Peptidoglycan-induced Expression of Interleukin-1α in THP-1 Monocytes/Macrophages)

  • 허원;손용해;조혁래;김관회
    • 생명과학회지
    • /
    • 제32권6호
    • /
    • pp.421-429
    • /
    • 2022
  • 본 연구에서는 죽상경화 플락에서 발견되는 펩티도글리칸이 혈관염증에서 어떠한 역할을 하는지 알아보기 위하여 염증성 사이토카인의 한 종류인 인터루킨-1 알파의 발현에 대한 영향을 조사하였다. 실험방법으로는 혈관염증을 주도하는 단핵구/대식세포인 THP-1 세포주에 펩티도글리칸을 처리하고 인터루킨-1 알파의 발현을 RT-PCR, real-time PCR, ELISA 방법으로 분석하였다. 펩티도글리칸의 처리 시간과 농도에 비례하여 단핵구/대식세포에서 인터루킨-1 알파의 전사체와 단백질 분비가 증가함을 관찰하였다. 또한 펩티도글리칸의 작용기전을 규명하기 위하여 신호전달을 차단하는 억제제를 세포에 처리하고 인터루킨-1 알파의 발현을 조사하였다. TLR2/4의 억제제인 OxPAPC 그리고 세포 kinase의 작용을 억제하는 LY294002(PI3 kinase 억제), Akti IV (Akt 억제), rapamycin (mTOR 억제), U0126 (MEK 억제), SB202190 (p38 MAPK 억제), SP6001250 (JNK 억제), DPI (NOX 억제)를 처리하는 경우 인터루킨-1 알파 전사체의 발현 그리고 단백질의 분비가 감소되었다. 반면에 LPS의 작용을 억제하는 polymyxin B는 인터루킨-1 알파의 발현에 영향을 주지 않았다. 이상의 결과는, 펩티도글리칸이 TLR2, PI3K, Akt, mTOR, MAPKs를 통하여 단핵구/대식세포의 인터루킨-1 알파 발현을 증가시키고 혈관염증에 기여한다는 것을 나타낸다.

A Novel Pyrazolo[3,4-d]pyrimidine Induces Heme Oxygenase-1 and Exerts Anti-Inflammatory and Neuroprotective Effects

  • Lee, Ji Ae;Kwon, Young-Won;Kim, Hye Ri;Shin, Nari;Son, Hyo Jin;Cheong, Chan Seong;Kim, Dong Jin;Hwang, Onyou
    • Molecules and Cells
    • /
    • 제45권3호
    • /
    • pp.134-147
    • /
    • 2022
  • The anti-oxidant enzyme heme oxygenase-1 (HO-1) is known to exert anti-inflammatory effects. From a library of pyrazolo[3,4-d]pyrimidines, we identified a novel compound KKC080096 that upregulated HO-1 at the mRNA and protein levels in microglial BV-2 cells. KKC080096 exhibited anti-inflammatory effects via suppressing nitric oxide, interleukin1β (IL-1β), and iNOS production in lipopolysaccharide (LPS)-challenged cells. It inhibited the phosphorylation of IKK and MAP kinases (p38, JNK, ERK), which trigger inflammatory signaling, and whose activities are inhibited by HO-1. Further, KKC080096 upregulated anti-inflammatory marker (Arg1, YM1, CD206, IL-10, transforming growth factor-β [TGF-β]) expression. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinetreated mice, KKC080096 lowered microglial activation, protected the nigral dopaminergic neurons, and nigral damage-associated motor deficits. Next, we elucidated the mechanisms by which KKC080096 upregulated HO-1. KKC080096 induced the phosphorylation of AMPK and its known upstream kinases LKB1 and CaMKKbeta, and pharmacological inhibition of AMPK activity reduced the effects of KKC080096 on HO-1 expression and LPS-induced NO generation, suggesting that KKC080096-induced HO-1 upregulation involves LKB1/AMPK and CaMKKbeta/AMPK pathway activation. Further, KKC080096 caused an increase in cellular Nrf2 level, bound to Keap1 (Nrf2 inhibitor protein) with high affinity, and blocked Keap1-Nrf2 interaction. This Nrf2 activation resulted in concurrent induction of HO-1 and other Nrf2-targeted antioxidant enzymes in BV-2 and in dopaminergic CATH.a cells. These results indicate that KKC080096 is a potential therapeutic for oxidative stress-and inflammation-related neurodegenerative disorders such as Parkinson's disease.