• Title/Summary/Keyword: Pharmacological mechanisms

Search Result 289, Processing Time 0.024 seconds

Induction of Apoptosis by Ethanol Extract of Cnidium officinale in Human Leukemia U937 Cells through Activation of AMPK (천궁 에탄올 추출물의 AMPK 활성화를 통한 U937 인체 혈구암세포의 apoptosis 유발)

  • Jeong, Jin-Woo;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1255-1264
    • /
    • 2015
  • Cnidium officinale, a traditional herb, has diverse beneficial pharmacological activities, such as anti-inflammatory, antioxidant, anticancer, and antiangiogenesis effects. However, the cellular and molecular mechanisms of apoptosis by C. officinale are poorly defined. The present study investigated the proapoptotic effects of water, ethanol, and methanol extract of C. officinale (WECO, EECO, and MECO, respectively) in human leukemia U937 cells. The antiproliferative activity of EECO was higher than that of WECO and MECO. The antiproliferative effect of EECO treatment in U937 cells was associated with the induction of apoptotic cell death, including increased populations of annexin-V positive cells, the formation of apoptotic bodies, DNA fragmentation, and increased numbers of cells with a loss of mitochondrial membrane potential (MMP, Δψm). EECO-induced apoptotic cell death was associated with upregulation of death receptor 4 (DR4) and down-regulation of cellular inhibitor of apoptosis protein-1 (cIAP-1), Bcl-2, and total Bid. The EECO treatment also induced the proteolytic activation of caspases (-3, -8, and -9), and degradation of caspase-3 substrate proteins, such as poly(ADP-ribose) polymerase (PARP), β-catenin, and phospholipase C-γ1 (PLCγ1). In addition, the EECO treatment effectively activated the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. However, compound C, a specific inhibitor of AMPK, significantly reduced EECO-induced apoptosis. These results indicate that AMPK is a key regulator of apoptosis in response to EECO in human leukemia U937 cells.

Senescence as A Consequence of Ginsenoside Rg1 Response on K562 Human Leukemia Cell Line

  • Liu, Jun;Cai, Shi-Zhong;Zhou, Yue;Zhang, Xian-Ping;Liu, Dian-Feng;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6191-6196
    • /
    • 2012
  • Aims and Background: Traditional chemotherapy strategies for human leukemia commonly use drugs based on cytotoxicity to eradicate cancer cells. One predicament is that substantial damage to normal tissues is likely to occur in the course of standard treatments. Obviously, it is urgent to explore therapies that can effectively eliminate malignant cells without affecting normal cells. Our previous studies indicated that ginsenoside $Rg_1$ ($Rg_1$), a major active pharmacological ingredient of ginseng, could delay normal hematopoietic stem cell senescence. However, whether $Rg_1$ can induce cancer cell senescence is still unclear. Methods: In the current study, human leukemia K562 cells were subjected to $Rg_1$ exposure. The optimal drug concentration and duration with K562 cells was obtained by MTT colorimetric test. Effects of $Rg_1$ on cell cycle were analyzed using flow cytometry and by SA-${\beta}$-Gal staining. Colony-forming ability was measured by colony-assay. Telomere lengths were assessed by Southern blotting and expression of senescence-associated proteins P21, P16 and RB by Western blotting. Ultrastructural morphology changes were observed by transmission electron microscopy. Results: K562 cells demonstrated a maximum proliferation inhibition rate with an $Rg_1$ concentration of $20{\mu}\;mol{\cdot}L^{-1}$ for 48h, the cells exhibiting dramatic morphological alterations including an enlarged and flat cellular morphology, larger mitochondria and increased number of lysosomes. Senescence associated-${\beta}$-galactosidase (SA-${\beta}$-Gal) activity was increased. K562 cells also had decreased ability for colony formation, and shortened telomere length as well as reduction of proliferating potential and arrestin $G_2$/M phase after $Rg_1$ interaction. The senescence associated proteins P21, P16 and RB were significantly up-regulated. Conclusion: Ginsenoside $Rg_1$ can induce a state of senescence in human leukemia K562 cells, which is associated with p21-Rb and p16-Rb pathways.

Effects and Mechanisms of Silkworm Powder as a Blood Glucose-Lowerinly Agent

  • Ryu, Kang-Sun;Lee, Heui-Sam;Kim, Iksoo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.93-100
    • /
    • 2002
  • Cocoon production, which is a representative of traditional sericulture shifted into silkworm powder production in the spring of 1995. This, infect, signifies the change from the dress-centered textile business to the bio-industry and the functional resource industry. One of the most outstanding shifting is utilization of silkworm larvae for anti-diabetic agent. In Asian countries including Korea, silkworm powder derived from the domestic silkworm (Bombyx mori L.) has long been favored for anti-diabetic agent, but its efficacy was not tested until last decade by modern scientific methods. In this article, we reviewed the major researches on the silkworm powder as a blood glucose-lowering substance. After the beginning test of the efficacy of silkworm powder by a cooperative research between Department of Sericulture and Entomlogy, NIAST, RDA and Kyung Hee University, substantial data have been accumulated so far, In a serial experiment to select best condition, the fifth instar larvae prepared by freeze dry method turned out to have the best blood glucose-lowering effect. In the pharmacological experiment to understand the mechanism of silkworm powder in small intestine, the silkworm powder turned out to inhibit the activity of ${\alpha}$-glucosidase, by competitively binding to $\alpha$-type disaccharides. The animal experiment showed that the extract of silkworm powder prevents a rapid increase of blood glucose level after meal and prevents hunger and law blood glucose level during empty stomach. In the experiment to isolate the major component of silkworm powder, which exerts blood glucose-lowering effect, 1-deoxynojirimy-cin (DNJ) was eventually mass-purified, and it turned out that DNJ isolated from silkworm powder was excellent in its blood glucose-lowering effect. In the experiment to understand the personal difference of the efficacy of the silkworm powder, clinical candidates were divided on the basis of the criterion of traditional Chinese medicine: Tae-Yang, Tae-Um, So-yang, and So-Um. The result showed that silkworm powder has a tendency to reduce blood glucose level at fasting and at 2 hours after meal, and this trend was somewhat obvious in the Tae-Um body type. In summary, we reviewed scientific papers on the efficacy of silkworm powder and its purified DNJ as a blood glucose-lowering agent. These suggest that silkworm powder truly possesses blood glucose-lowering effect as documented in the traditional Chinese medicine, although further researches will be required to develop them as "medical" resource instead of functional food.

Neuroprotective and Memory Enhancing Effects of Pinelliae rhizoma Extract (반하가 CT105에 의한 신경세포 상해 및 백서의 기억에 미치는 영향)

  • Gang Sang-Yeol;Lee So-Yeon;Yoon Hyeon-Deok;Shin Oh-Chul;Park Chang-Gook;Park Chi-Sang
    • The Journal of Korean Medicine
    • /
    • v.26 no.3 s.63
    • /
    • pp.27-42
    • /
    • 2005
  • Objectives : Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease characterized by amyloid plaques and neurofibrillary tangles. These plaques are associated with degenerating neuronal processes and consist primarily of fibrillary aggregates of beta-amyloid$ protein, generated from amyloid precursor protein (APP). Another amyloidogenic fragment, the carboxyl terminus (CT) of APP, which is composed of 99-105 amino acid residues containing the complete $A{\beta}$ sequence, also appears to be toxic to neurones. Recent evidence suggest that CT105, carboxy terminal 105 amino acids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. Methods : Although a variety of oriental prescriptions including Pinelliae rhizoma have traditionally been utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. In the present study, we investigated effects of the dichloromethane extract of Pinelliae rhizoma (PINR) on neurotoxicity and the formation of reactive oxygen species (ROS) and nitric oxide (NO) in SK-N-SH cells overexpressed with CT105. In addition, we evaluated its radical scavenging activity and effects on acetylcholinesterase (AChE) activity. Furthermore, effects on cognitive deficits induced by scopolamine treatment in rats were evaluated. Results ; We found in this study that PINR significantly inhibited apoptotic neuronal death induced by CT105 overexpression in SK-N-SH cells. Based on morphological examinations by phase-contrast microscopy, PINR reversed apoptotic changes of CT105-expressed cells. It was also found that PINR significantly promoted neurite outgrowth and inhibited formation of ROS nd NO. PINR was shown to scavenge DPPH radicals and noncompetitively inhibit AChE activity. Furthermore, it reduced scopolamine-induced memory impairment in rata, assessed by passive avoidance test. Conclusions : Taken together, these results demonstrate that PINR exhibits neuroprotective, antioxidant, and memory enhancing effects, and therefore may bs beneficial for the treatment of AD.

  • PDF

Study of Apoptotic Effect on Hydrogen Peroxide-induced Rat PC-12 Cells by Aster tataricus Water Extract (자완 수추출물(水抽出物)이 $H_2O_2$에 의해 유도(誘導)된 PC-12 세포주(細胞株)의 세포사(細胞死)에 미치는 영향(影響))

  • Shin, Yoo-Jung;Kim, Seung-Mo;Park, Chi-Sang;Shin, Oh-Chul
    • The Journal of Korean Medicine
    • /
    • v.28 no.2 s.70
    • /
    • pp.213-223
    • /
    • 2007
  • Objective : Alzheimer's disease (AD) is a geriatric dementia that is widespread in old age. With an aging populace, AD is a looming problem in public health service. Alzheimer's disease is characterized by specific neuronal degeneration in certain areas of the brain. Mutations and abnormal expression of several genes are associated with ${\beta}-amyloid$ deposits and Alzheimer's disease; among them APP, PS1, and PS2, SOD, free radical, ROS. Methods:We studied herbal medicines that have a relationship to brain degeneration. From pre-modern times, although a variety of oriental prescriptions of Aster tataricus have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. Result : Based on morphological observations by phase-contrast microscope, TUNEL assay and MTT in the culture media, $H_20_2-induced$ cell death was significantly inhibited by Aticus. We examined by ROS formation, catalase activity and GSH activity. We studied the protective effect and inhibitory effects of neurotoxicity in $H_20_2-induced$ PC-12 cells by Aticus. Findings from our experiments show that Aticus inhibits apoptosis, which has neurotoxicities and cell damage in PC-12 cells. In addition, treatment with Aticus ($>25{\mu}g/ml$ for 6hrs) partially prevented $H_20_2-induced$ cytotoxicity in PC-12 cells, and induced a protective effect. Conclusion : As the result of this study, in the Aticus group, the apoptosis in the nervous system was inhibited, protected against the degeneration of PC-12 cells by $H_20_2$. Taken together, Aticus exhibited inhibition of $H_20_2-induced$ apoptotic cell death. Aticus was found to induce protective effect on GSH and catalase in PC-12 cells. Based on these findings, Aticus may be beneficial for the treatment of AD.

  • PDF

Inhibition of advanced glycation end product formation by burdock root extract (우엉 뿌리 추출물의 최종당화산물 형성 억제 효능)

  • Lee, Darye;Kim, Choon Young
    • Journal of Nutrition and Health
    • /
    • v.49 no.4
    • /
    • pp.233-240
    • /
    • 2016
  • Purpose: Diabetic complications are a major concern to manage progression of diabetes. Production of advanced glycation end products (AGEs) due to high blood glucose is one of the mechanisms leading to diabetic complications. Multiple pharmacologic AGE inhibitory agents are currently under development, but clinical applications are still limited due to safety issues. Thus, it is necessary to identify a safe anti-glycation agent. It is known that burdock roots have antioxidant, anti-inflammatory, and anti-cancer activities. The objective of the present study was to investigate the inhibitory role of burdock roots on the formation of high glucose-induced glycation of bovine serum albumin (BSA). Methods: In this study, glycation of BSA by glucose, galactose, or fructose at $37^{\circ}C$ for 3 weeks was assessed based on levels of ${\alpha}$-dicarbonyl compounds (early-stage glycation products), fructosamine (intermediate products of glycation), and fluorescent AGEs (late-stage glycation products). In order to compare the inhibitory actions of burdock root extract in AGE formation, aminoguanidine (AG), a pharmacological AGE inhibitor, was used as a positive control. Results: BSA glycation by glucose, fructose, and galatose was dose- and time-dependently produced. Burdock root extract at a concentration of 4 mg/mL almost completely inhibited glucose-induced BSA glycation. The results demonstrate that burdock root extract inhibited AGE formation with an $IC_{50}$ value of 1.534 mg/mL, and inhibitory activity was found to be more effective than the standard anti-glycation agent aminoguanidine. This study identified a novel function of burdock root as a potential anti-glycation agent. Conclusion: Our findings suggest that burdock root could be beneficial for preventing diabetic complications.

Studies about the bioactive component analysis and an oral glucose tolerance test of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) for confirmation of diabetes therapy (가감생혈윤부음(加減生血潤膚飮)의 당뇨병 치료효과 확인을 위한 생리활성성분 분석과 경구포도당부하 연구)

  • In, Jeongdo;Im, Daisig;Kim, Won-Ill
    • Herbal Formula Science
    • /
    • v.24 no.2
    • /
    • pp.80-99
    • /
    • 2016
  • Objectives : Instrumental chemical analysis was utilized to investigate the effect of Add-Omit-Saenghyeoryunbu-eum(AO-SHU) on diabetic treatment. One of the most exciting, yet also controversial, arguments is the safety and biological mechanisms of the natural medicine on human body. Therefore, the aim of this study is to provide a better understanding on bioactive chemical components, hazards of heavy metal contamination and biological mechanism of the diabetic medicine composed of 12 different natural herbs. Methods : To study bioactive compound and metallic component in the diabetic medicine in detail, LC-MS/MS (Liquid Chromatography-Mass/Mass), GC (Gas Chromatography) and ICP (Inductively Coupled Plasma) were utilized to characterize the extract of the diabetic medicine and the result was compared with 18 marker substances selected from literature survey. In addition, in vitro assay experiments including GPR 119 activity and human DGAT-1 inhibition, and OGTT (Oral Glucose Tolerance Test) were performed to verify the effectiveness of this medicine on diabetic treatment. Results : Out of 18 marker substances, 9 bioactive compounds were identified from LC-MS/MS analysis which include Citruline, Catalpol, Berberine, Ginsenoside Rb1, Ginsenoside Rg1, Oleanolic acid, β-Sitosterol, Mangiferin, and Schizandrin. ICP study on 245 residual pesticides revealed that 239 species were not detected but 6 species, Dimethomorph, Trifloxystrobin, Pyraclostrobin, Isoprocarb, Carbaryl and Flubendiamide, while the amounts are trace levels, below permitted concentrations. The biological activity was observed in vitro assay and Oral Glucose Tolerance Test(OGTT), which are consistent with a preliminary clinical test result, a drop in blood sugar level after taking this herbal medicine. Conclusions : Instrumental chemical analysis using LC-MS/MS, GC, and ICP was conducted successfully to identify bioactive compounds in AO-SHU for the treatment of diabetes, finding 9 bioactive compounds. Furthermore, in vitro assay experiments and OGTT show that AO-SHU has its biological activities, which imply that it can be a candidate for the future diabetes remedy.

α-Asarone Ameliorates Memory Deficit in Lipopolysaccharide-Treated Mice via Suppression of Pro-Inflammatory Cytokines and Microglial Activation

  • Shin, Jung-Won;Cheong, Young-Jin;Koo, Yong-Mo;Kim, Sooyong;Noh, Chung-Ku;Son, Young-Ha;Kang, Chulhun;Sohn, Nak-Won
    • Biomolecules & Therapeutics
    • /
    • v.22 no.1
    • /
    • pp.17-26
    • /
    • 2014
  • ${\alpha}$-Asarone exhibits a number of pharmacological actions including neuroprotective, anti-oxidative, anticonvulsive, and cognitive enhancing action. The present study investigated the effects of ${\alpha}$-asarone on pro-inflammatory cytokines mRNA, microglial activation, and neuronal damage in the hippocampus and on learning and memory deficits in systemic lipopolysaccharide (LPS)-treated C57BL/6 mice. Varying doses of ${\alpha}$-asarone was orally administered (7.5, 15, or 30 mg/kg) once a day for 3 days before the LPS (3 mg/kg) injection. ${\alpha}$-Asarone significantly reduced TNF-${\alpha}$ and IL-$1{\beta}$ mRNA at 4 and 24 hours after the LPS injection at dose of 30 mg/kg. At 24 hours after the LPS injection, the loss of CA1 neurons, the increase of TUNEL-labeled cells, and the up-regulation of BACE1 expression in the hippocampus were attenuated by 30 mg/kg of ${\alpha}$-asarone treatment. ${\alpha}$-Asarone significantly reduced Iba1 protein expression in the hippocampal tissue at a dose of 30 mg/kg. ${\alpha}$-Asarone did not reduce the number of Iba1-expressing microglia on immunohistochemistry but the average cell size and percentage areas of Iba1-expressing microglia in the hippocampus were significantly decreased by 30 mg/kg of ${\alpha}$-asarone treatment. In the Morris water maze test, ${\alpha}$-asarone significantly prolonged the swimming time spent in the target and peri-target zones. ${\alpha}$-Asarone also significantly increased the number of target heading and memory score in the Morris water maze. The results suggest that inhibition of pro-inflammatory cytokines and microglial activation in the hippocampus by ${\alpha}$-asarone may be one of the mechanisms for the ${\alpha}$-asarone-mediated ameliorating effect on memory deficits.

Proteome Analysis of Responses to Ascochlorin in LPS-induced Mouse Macrophage RAW264.7 Cells by 2-D Gel Electrophoresis and MALDI-TOF MS. (LPS로 자극된 macrophage RAW264.7 세포에서 ascochlorin에 대한 단백질체 분석)

  • Chang, Young-Chae
    • Journal of Life Science
    • /
    • v.18 no.6
    • /
    • pp.814-825
    • /
    • 2008
  • Ascochlorin (ASC) is prenyl-phenol compound that was isolated from the fungus Ascochyta viciae. ASC reduces serum cholesterol and triglyceride levels, and suppresses hypertension, tumor development, ameliorates type I and II diabetes. Here, to better understand the mechanisms by which ASC regulates physiological or pathological events and induces responses in the pharmacological treatment of inflammation, we performed differential analysis of the proteome of the mouse macrophage RAW264.7 cells in response to ASC. In this study, we used a proteomic analysis of LPS-induced RAW264.7 cells treated by ASC, to identify proteins potentially involved in inflammatory processes. The RAW264.7 cell proteomes with and without treatment with ASC were compared using two-dimensional electrophoresis (2-D SDS-PAGE), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF-MS) and bioinformatics. The largest differences in expression were observed for the calreticulin (4-fold decrease), ${\beta}-actin$ (4-fold decrease) and vimentin (1.5-fold decrease). In addition, rabaptin was increased 3-fold in RAW264.7 cells treated with ASC. The expression of some selected proteins was confirmed by RT-PCR analysis.

Induction of Apoptosis and G2/M Cell Cycle Arrest by Cordycepin in Human Prostate Carcinoma LNCap Cells (Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발)

  • Lee, Hye Hyeon;Hwang, Won Deok;Jeong, Jin-Woo;Park, Cheol;Han, Min Ho;Hong, Su Hyun;Jeong, Yong Kee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Cordycepin, an active component originally isolated from the traditional medicine Cordyceps militaris, is a derivative of the nucleoside adenosine, which has been shown to possess a number of pharmacological properties, including antioxidant and anti-inflammatory activities, immunological stimulation, and antitumor effects. This study was conducted on cultured human prostate carcinoma LNCap cells to elucidate the possible mechanisms by which cordycepin exerts its anticancer activity, which, until now, has remained poorly understood. Cordycepin treatment of LNCap cells resulted in dose-dependent inhibition of cell growth and the induction of apoptotic cell death as detected by an MTT assay, cleavage of poly ADP-ribose polymerase, and annexin V-FITC staining. Flow cytometric analysis revealed that cordycepin resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and cyclin A expression in a concentration-dependent manner. Moreover, the incubation of cells with cordycepin caused a striking induction in the expression of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 without affecting the expression of the tumor suppressor p53. It also resulted in a significant increase in the binding of CDK2 and CDC2 to p21. These findings suggest that cordycepin-induced G2/M arrest and apoptosis in human prostate carcinoma cells is mediated through p53-independent upregulation of the CDK inhibitor p21.