• 제목/요약/키워드: Pharmacokinetics (PK)

검색결과 52건 처리시간 0.022초

건강한 성인에서의 알코올의 집단 약물동태/약물동력에 미치는 산소의 영향 연구 (Influence of Oxygen to Population Pharmacokinetics/Pharmacodynamics of Alcohol in Healthy Volunteers)

  • 송병정;백현문;황시영;채정우;윤휘열;권광일
    • 한국임상약학회지
    • /
    • 제27권4호
    • /
    • pp.258-266
    • /
    • 2017
  • Objective: To develop a population pharmacokinetics (PK)/pharmacodynamics (PD) model for alcohol in healthy volunteers and to elucidate individual characteristics to affects alcohol's PK or PD including dissolved oxygen. Methods: Following multiple intakes of total 540 mL alcohol (19.42 v/v%) to healthy volunteer, blood alcohol concentration was measured using a Breathe alcohol analyser (Lion SD-400 $Alcolmeter^{(R)}$). A sequential population PK/PD modeling was performed using NONMEM (ver 7.3). Results: Eighteen healthy volunteer were included in the study. PK model of alcohol was well explained by one-compartment model with first-order absorption and Michaelis-Menten elimination kinetics. $K_a$, V/F, $V_{max}$, $K_m$ is $8.1hr^{-1}$, 73.7 L, 9.65 g/hr, 0.041 g/L, respectively. Covariate analysis revealed that gender significantly influenced $V_{max}$ (Male vs Female, 9.65 g/hr vs 7.38 g/hr). PD model of temporary systolic blood pressure decreasing effect of alcohol was explained by biophase model with inhibitory $E_{max}$ model. $K_{e0}$, $I_{max}$, $E_0$, $IC_{50}$ were $0.23hr^{-1}$, 44.9 mmHg, 138 mmHg, 0.693 g/L, respectively. Conclusion: Model evaluation results suggested that this PK/PD model was robust and has good precision.

건강한 한국인에서 미다졸람 집단약동학 분석: CYP3A 매개 약물상호작용 평가 (Population Pharmacokinetics of Midazolam in Healthy Koreans: Effect of Cytochrome P450 3A-mediated Drug-drug Interaction)

  • 신광희
    • 한국임상약학회지
    • /
    • 제26권4호
    • /
    • pp.312-317
    • /
    • 2016
  • Objective: Midazolam is mainly metabolized by cytochrome P450 (CYP) 3A. Inhibition or induction of CYP3A can affect the pharmacological activity of midazolam. The aims of this study were to develop a population pharmacokinetic (PK) model and evaluate the effect of CYP3A-mediated interactions among ketoconazole, rifampicin, and midazolam. Methods: Three-treatment, three-period, crossover study was conducted in 24 healthy male subjects. Each subject received 1 mg midazolam (control), 1 mg midazolam after pretreatment with 400 mg ketoconazole once daily for 4 days (CYP3A inhibition phase), and 2.5 mg midazolam after pretreatment with 600 mg rifampicin once daily for 10 days (CYP3A induction phase). The population PK analysis was performed using a nonlinear mixed effect model ($NONMEM^{(R)}$ 7.2) based on plasma midazolam concentrations. The PK model was developed, and the first-order conditional estimation with interaction was applied for the model run. A three-compartment model with first-order elimination described the PK. The influence of ketoconazole and rifampicin, CYP3A5 genotype, and demographic characteristics on PK parameters was examined. Goodness-of-fit (GOF) diagnostics and visual predictive checks, as well as bootstrap were used to evaluate the adequacy of the model fit and predictions. Results: Twenty-four subjects contributed to 900 midazolam concentrations. The final parameter estimates (% relative standard error, RSE) were as follows; clearance (CL), 31.8 L/h (6.0%); inter-compartmental clearance (Q) 2, 36.4 L/h (9.7%); Q3, 7.37 L/h (12.0%), volume of distribution (V) 1, 70.7 L (3.6%), V2, 32.9 L (8.8%); and V3, 44.4 L (6.7%). The midazolam CL decreased and increased to 32.5 and 199.9% in the inhibition and induction phases, respectively, compared to that in control phase. Conclusion: A PK model for midazolam co-treatment with ketoconazole and rifampicin was developed using data of healthy volunteers, and the subject's CYP3A status influenced the midazolam PK parameters. Therefore, a population PK model with enzyme-mediated drug interactions may be useful for quantitatively predicting PK alterations.

Effects of mixed formulation of tamoxifen and blue honeysuckle on the pharmacokinetics profiles of tamoxifen after single oral administration

  • Hu, Jin-Ryul;Jang, Tae-Woo;Kang, Su-Jin;Ku, Sae-Kwang;Choi, Seong-Hun;Lee, Young-Joon
    • 대한한의학회지
    • /
    • 제40권4호
    • /
    • pp.1-15
    • /
    • 2019
  • Objectives: Here, we investigated the effects of concentrated and lyophilized powders Blue honeysuckle (BH) on the PK of tamoxifen, to establish the pharmacokinetics (PK) profiles as one of essential process in new drug development. Methods: After single oral treatment of 0.4 mg/ml of tamoxifen or tamoxifen 0.4 with BH 40, 20 and 10 mg/ml, the plasma were collected at 0.5 hr before administration, 0.5, 1, 2, 3, 4, 6, 8 and 24 hr after end of single or mixed formula treatment. Plasma concentrations of tamoxifen were analyzed using LC-MS/MS methods. Tmax, Cmax, AUC, t1/2 and MRTinf were analyzed using noncompartmental PK data analyzer programs. Results: Tamoxifen and BH 40 mg/ml did not induce any significant change on the plasma tamoxifen concentrations, while significant decreases were observed in tamoxifen and BH 10 mg/ml from 2 to 8 hr as compared with tamoxifen only, respectively. Furthermore, significant increases of Tmax in tamoxifen and BH 40 mg/ml, significant decreases of Cmax in tamoxifen and BH 20 mg/ml, significant decreases of AUC0-t, AUC0-inf and MRTinf in tamoxifen and BH 10 mg/ml were demonstrated as compared with tamoxifen only. Conclusion: Taken together, tamoxifen and BH 10 mg/ml induced significant decrease of the oral bioavailability of tamoxifen, while tamoxifen and BH 40 or 20 mg/ml did not critically influenced, suggesting formulated BH concentration-independencies. It, therefore, seems to be needed that pharmacokinetic study after repeated administration should be tested to conclude the effects of BH on the pharmacokinetics of tamoxifen.

Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level

  • Choi, Min-Koo;Song, Im-Sook
    • Biomolecules & Therapeutics
    • /
    • 제24권2호
    • /
    • pp.199-205
    • /
    • 2016
  • This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration ($2-75{\mu}M$) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was $1.9{\mu}L/min$ while passive diffusion clearance was $0.31{\mu}L/min$. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as $C_{max}$ and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.

한국성인환자의 임상약동학 자료를 이용한 반코마이신 용량설정표 (nomogram)의 개발 (Development of Vancomycin Dosing Nomogram Based on Clinical Pharmacokinetic Data of Korean Adult Patients)

  • 배성미;김상일;강문원;조혜경
    • 약학회지
    • /
    • 제45권2호
    • /
    • pp.153-160
    • /
    • 2001
  • This research developed an intravenous (IV) vancomycin dosing nomogram based on the clinical pharmacokinetic data of Korean adult patients. Total 99 pairs of steady-state peak and trough serum concentrations of vancomycin were obtained from 73 adult patients in a tertiary general hospital. Serum vancomycin concentrations were determined to assess the appropriateness of initial vancomycin dosing. Only 47.2% of the cases were within therapeutic range. To characterize the clinical pharmacokinetics (PK) of vancomycin, PK parameters including elimination rate constant ( $K_{e}$) half-life( $T_{1}$2/), clearance (C $l_{van}$), volume of distribution ( $V_{d}$) were calculated by using one-compartment, first order pharmacokinetic equations. PK parameters were evaluated based on the differences of patients'renal function and age. Regression analysis showed a significant correlation between C $l_{van}$ and $C_{cr}$ (C $l_{van}$ = -1.89+0.914 $C_{cr}$ , r=0.763) and between $K_{e}$ and $C_{cr}$ , ( $K_{e}$=-0.0037+0.00139 $C_{cr}$ =0.724). The relationship between $K_{e}$ and $C_{cr}$ , and the mean $V_{d}$ were utilized for developing the nomogram to individualize the initial dosing regimen of vancomycin for the patients with various degrees of renal functions. The nomogram may be used as an efficient tool to determine safe and effective doses of vancomycin for the Korean adult patients.nts.nts.nts.s.nts.

  • PDF

Evaluation of Pharmacokinetics of Simvastatin and Its Pharmacologically Active Metabolite from Controlled-Release Tablets of Simvastatin in Rodent and Canine Animal Models

  • Shanmugam, Srinivasan;Ryu, Jae-Kuk;Yoo, Sun-Dong;Choi, Han-Gon;Woo, Jong-Soo
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.248-254
    • /
    • 2011
  • Biotransformation of pharmacologically inactive lactone prodrug simvastatin (SV) into pharmacologically active simvastatin ${\beta}$-hydroxy acid (SVA) exhibits inter-species differences due to variations in amount and activity of esterase enzymes. In this study, we investigated the pharmacokinetics (PK) of SV and its metabolite SVA following oral doses of SV from controlled-release (CR) tablets and immediate-release (IR) tablets in rodent and canine animal models that features different esterase activity. In rat PK study, no SV was detected in plasma for both formulations due to rapid hydrolysis of SV into SVA by plasma esterase. Besides, no significant differences in PK parameters of SV or SVA were observed between both species. In dog PK study, the relative oral bioavailability of CR tablets in terms of SV was 72.3% compared to IR tablets. Regarding formulation differences in dogs, CR tablets exhibited significantly lower $C_{max}$ (p<0.05), and higher $T_{max}$ (p<0.01) and MRT (p<0.01) for both SV and SVA compared to IR tablets. Accordingly, CR tablets of SV with prolonged drug release profiles in both species might be a potential candidate for a more effective delivery of SV with reduced side effects. Besides, similar PK parameters of SV and SVA in both species despite variation in enzyme activities suggested involvement of equally potent biotransformation pathways in these animal species.

Allometric analysis of tylosin tartrate pharmacokinetics in growing male turkeys

  • Pozniak, Blazej;Tikhomirov, Marta;Motykiewicz-Pers, Karolina;Bobrek, Kamila;Switala, Marcin
    • Journal of Veterinary Science
    • /
    • 제21권3호
    • /
    • pp.35.1-35.11
    • /
    • 2020
  • Background: Despite common use of tylosin in turkeys, the pharmacokinetic (PK) data for this drug in turkeys is limited. Within a few months of growth, PK of drugs in turkeys undergoes changes that may decrease their efficacy due to variable internal exposure. Objectives: The objective of this study was to investigate the influence of age on the PK of a single intravenous (i.v.) and oral administration of tylosin to turkeys at a dose of 10 and 50 mg/kg, respectively. Methods: Plasma drug concentrations were measured using high-performance liquid chromatography with UV detection. The PK parameters were assessed by means of non-compartmental approach and were subjected to allometric analysis. Results: During a 2.5-month-long period of growth from 1.4 to 14.7 kg, the median value for area under the concentration-time curve after i.v. administration increased from 2.61 to 7.15 mg × h/L and the body clearance decreased from a median of 3.81 to 1.42 L/h/kg. Over the same time, the median elimination half-life increased from 1.03 to 2.96 h. For the oral administration a similar trend was noted but the differences were less pronounced. Bioavailability was variable (5.76%-21.59%) and age-independent. For both routes, the plasma concentration of the major tylosin metabolite, tylosin D, was minimal. Protein binding was age-independent and did not exceed 50%. Allometric analysis indicated a relatively poor predictivity of clearance, volume of distribution and elimination half-life for tylosin in turkeys. Conclusions: Age has a significant impact on tylosin PK in turkeys and dosage adjustment may be needed, particularly in young individuals.

흰쥐에서 올리고펩타이드 함유 리포솜의 근육주사후 체내동태 및 임파이행 (Pharmacokinetics and Lymphatic Delivery of Oligopeptide after Intramuscular Injection of Oligopeptide-bearing Liposomes to Rats)

  • 신대환;조병석;최규석;송석길;이종길;정연복
    • Journal of Pharmaceutical Investigation
    • /
    • 제38권3호
    • /
    • pp.191-197
    • /
    • 2008
  • The purpose of the present study was to examine the pharmacokinetics and lymphatic delivery of the oligopeptide, a model peptide of X antigen epitope peptides, after the intramuscular administration of the peptide-bearing liposomes in rats. $^{14}C$-labelled peptide was used as a tracer to analyze the peptide levels in plasma, bile, urine, tissue homogenates, and lymph nodes (superior cervical nodes, brachial nodes and superior mesenteric nodes). Model peptide rapidly disappeared from the plasma by 30 min (${\alpha}$ phase) after i.v. administration, which was followed by the late disappearance. The apparent plasma half-lives ($t_{1/2({\alpha}),app}$) of the peptide at the ${\alpha}$ phase when administered at a dose of 0.2-1.0 mg/kg were about 5 min. The maximum plasma concentration ($C_{max}$) was $1.52\;{\mu}g/mL$, after the i.m. administration of the peptide at a dose of 1.0 mg/kg. The bioavailability, which was calculated from the time zero to last quantitative time, of the i.m. administered peptide was over 60%. Of the various tissues tested, the peptide was mainly distributed in the kidney after the i.m. administration. The peptide levels in the kidney 3 hr after the i.m. administration were higher than those of maximum plasma concentration ($C_{max}$). The cumulative amounts of the peptide found in the urine 72 hr after the administration of 1.0 mg/kg were 2-folder higher than those in the bile, suggesting that the peptide is mostly excreted in the urine. Moreover, the concentrations of the peptide in the lymph nodes were as high as that of the plasma and the tissues. In conclusion, the peptide concentration in the lymph nodes was maintained by 24 hr after the i.m. administration of the peptide-bearing liposomes.

Pharmacokinetics of 11-Hydroxyaclacinomycin X (ID-6105), a Novel Anthracycline, after i.v. Bolus Multiple Administration in Rats

  • Yoo Bo-Im;Ahan Kwang Bok;Kang Min Hee;Kwon Oh-Seung;Hong Young-Soo;Lee Jung Joon;Lee Hong Sub;Ryu Jung Su;Kim Tae Yong;Moon Dong-Cheul;Song Sukgil;Chung Youn Bok
    • Archives of Pharmacal Research
    • /
    • 제28권4호
    • /
    • pp.476-482
    • /
    • 2005
  • We investigated the pharmacokinetics of 11-hydroxyaclacinomycin X (ID-6105), a novel anthracycline, after intravenous (i.v.) bolus administration at a multiple dose every 24 h for 5 days in rats. To analyze ID-6105 levels in biological samples, we used an HPLC-based method which was validated in a pharmacokinetic study by suitable criteria. The concentrations of ID-6105 after the multiple administration for 5 days were not significantly different from the results after the single administration. The $t_{1/2\alpha}, t_{l/2\beta}, V_{dss}, and CL_{t}$ after the multiple administration were not significantly different from the values after the single administration. Moreover, the concentrations of ID-6105 1 min at day 1-5 after i.v. bolus multiple administration did not show the significant difference. Of the various tissues, ID-6105 mainly distributed to the kidney, lung, spleen, adrenal gland, and liver after i.v. bolus multiple administration. ID-6105 concentrations in the kidney or lung 2 h after i.v. bolus administration were comparable to the plasma concentration shortly after i.v. bolus administration. However, the ID-6105 concentrations in various tissues 48 h after i.v. bolus administration decreased to low levels. ID-6105 was excreted largely in the bile after i.v. bolus multiple administration at the dose of 3 mg/kg. The amounts of ID-6105 found in the bile by 12 h or in the urine by 48 h after the administration were calculated to be $14.1\% or 4.55\%$ of the initial dose, respectively, indicating that ID-6105 is mostly excreted in the bile. In conclusion, ID-6105 was rapidly cleared from the blood and transferred to tissues, suggesting that ID-6105 might not be accumulated in the blood following i.v. bolus multiple dosages of 3 mg/kg every 24 h for 5 days. By 48 h after i.v. bolus administration, ID-6105 concentrations in various tissues had decreased to very low levels. The majority of ID-6105 appears to be excreted in the bile.

Prediction of pharmacokinetics and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach: A case study of caffeine and ciprofloxacin

  • Park, Min-Ho;Shin, Seok-Ho;Byeon, Jin-Ju;Lee, Gwan-Ho;Yu, Byung-Yong;Shin, Young G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권1호
    • /
    • pp.107-115
    • /
    • 2017
  • Over the last decade, physiologically based pharmacokinetics (PBPK) application has been extended significantly not only to predicting preclinical/human PK but also to evaluating the drug-drug interaction (DDI) liability at the drug discovery or development stage. Herein, we describe a case study to illustrate the use of PBPK approach in predicting human PK as well as DDI using in silico, in vivo and in vitro derived parameters. This case was composed of five steps such as: simulation, verification, understanding of parameter sensitivity, optimization of the parameter and final evaluation. Caffeine and ciprofloxacin were used as tool compounds to demonstrate the "fit for purpose" application of PBPK modeling and simulation for this study. Compared to caffeine, the PBPK modeling for ciprofloxacin was challenging due to several factors including solubility, permeability, clearance and tissue distribution etc. Therefore, intensive parameter sensitivity analysis (PSA) was conducted to optimize the PBPK model for ciprofloxacin. Overall, the increase in $C_{max}$ of caffeine by ciprofloxacin was not significant. However, the increase in AUC was observed and was proportional to the administered dose of ciprofloxacin. The predicted DDI and PK results were comparable to observed clinical data published in the literatures. This approach would be helpful in identifying potential key factors that could lead to significant impact on PBPK modeling and simulation for challenging compounds.