• Title/Summary/Keyword: Pharmacokinetic interaction

Search Result 84, Processing Time 0.026 seconds

Effect of Fluvastatin on the Pharmacokinetics of Diltiazem and its Metabolite, Desacetyldiltiazem in Rats (흰쥐에서 플루바스타틴이 딜티아젬 및 그 대사체인 데스아세틸딜티아젬의 약물동태에 미치는 영향)

  • Piao Yang-Ji;Choi Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.118-123
    • /
    • 2006
  • The aim of this study was to investigate the effect of fluvastatin on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were deter-mined after an oral administration of diltiazem (15 mg/kg) to rats pretreated with fluvastatin (0.5 and 1.5 mg/kg). Compared with the control (given diltiazem alone), the pretreatment of fluvastatin significantly (p<0.05) increased the area under the plasma concentration (AUC), peak plasma concentration $(C_{max})\;and\;K_a$ of diltiazem. Relative bioavailability $(RB\%)$ of diltiazem increased from 1.36- to 1.55-fold. However there were no significant changes in $t_{max},\;K_{el}\;and\;t_{1/2}$ of diltiazem. The pretreatment of fluvastatin also altered the pharmacokintic parameters of desacetyldiltiazem. The pretreatment of fluvastatin (1.5 mg/kg) significantly (p<0.05) increased the AUC of desacetyldiltiazem, whereas the metabolite parent ratio (MR) of desacetyldiatlazem was decreased significantly (p<0.05), suggesting that fluvastatin might inhibit the metabolism of diltiazem. The pretreatment of fluvastatin enhanced the bioavailability of diltiazem in a dose dependent manner at doses ranging from 0.5 to 1.5 mg/kg. further studies for the drug Interaction will be needed in the clinical trials when dilitazem is administrated concomitantly with fluvastatin in humans.

Antibacterial and Pharmacological Evaluation of Fluoroquinolones: A Chemoinformatics Approach

  • Sood, Damini;Kumar, Neeraj;Singh, Aarushi;Sakharkar, Meena Kishore;Tomar, Vartika;Chandra, Ramesh
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2018
  • Fluoroquinolone (FQ) antibiotics are an important class of synthetic antibacterial agents. These are the most extensively used drugs for treating bacterial infections in the field of both human and veterinary medicine. Herein, the antibacterial and pharmacological properties of four fluoroquinolones: lomefloxacin, norfloxacin, ciprofloxacin, and ofloxacin have been studied. The objective of this study was to analyze the antibacterial characteristics of the different fluoroquinolones. Also, the pharmacological properties of the compounds including the Lipinski rule of five, absorption, distribution, metabolism, and excretion, LD50, drug likeliness, and toxicity were evaluated. We found that among all four FQ molecules, ofloxacin showed the highest antibacterial activity through in silico assays with a strong interaction (-38.52 kJ/mol) with the antibacterial target protein (topoisomerase-II DNA gyrase enzyme). The pharmacological and pharmacokinetic analysis also showed that the compounds ciprofloxacin, ofloxacin, lomefloxacin and norfloxacin have good pharmacological properties. Notably, ofloxacin was found to possess an IGC50 (concentration needed to inhibit 50% growth) value of $0.286{\mu}g/L$ against the Tetrahymena pyriformis protozoa. It also tested negative for the Ames toxicity test, showing its non-carcinogenic character.

Effect of Morin on the Pharmacokinetics of Nifedipine in Rats (흰쥐에서 모린이 니페디핀의 약물동태에 미치는 영향)

  • Lee, Chong-Ki;Choi, Jun-Shik
    • YAKHAK HOEJI
    • /
    • v.51 no.3
    • /
    • pp.169-173
    • /
    • 2007
  • The aim of this study was to investigate the effect of morin on the pharmacokinetics of nifedipine in rats. The pharmacokinetic parameters of nifedipine were measured after the oral administration of nifedipine (5 mg/kg) in the presence or absence of morin (1.5, 7.5 and 15 mg/kg, respectively). Compared to the control groups, the presence of 7.5 mg/kg and 15 mg/kg of morin significantly (p<0.05) increased the area under the plasma concentration-time curve (AUC) of nifedipine by 48.5${\sim}$68.2%, and the peak concentration (C$_{max}$,) of nifedipine by 59.9~84.2%. The absolute bioavailability(AB%) of nifedipine was significantly (p<0.05) increased by 21.5${\sim}$24.5% compared to the control (14.5%). While there was no significant change in the time to reach the peak plasma concentration (T$_{max}$) and the terminal half-life (T$_{1/2}$) of nifedipine in the presence of morin. It might be suggested that morin altered disposition of nifedipine by inhibition of both the first-pass metabolism and p-glycoprotein (P-gp) efflux pump in the small intestine of rats. In conclusion, the presence of morin significantly enhanced the oral bioavailability of nifedipine, suggesting that concurrent use of morin or morin-containing dietary supplement with nifedipine should require close monitoring for potential drug interaction.

Drug Interaction Between Verapamil and Pioglitazone Long-term Administered to Rats (흰쥐에서 베라파밀과 장기투여된 피오그리타존과의 약물상호작용)

  • Choi, Dong-Hyun;Kim, Hyun-Yong;Choi, Jun-Shik
    • Korean Journal of Clinical Pharmacy
    • /
    • v.18 no.1
    • /
    • pp.6-10
    • /
    • 2008
  • This study investigated the effect of long-term administration of pioglitazone on the pharmacokinetics of verapamil in rats. Pharmacokinetic parameters of verapamil were determined after oral administration of verapamil (9 mg/kg) in rats coadministered pioglitazone (0.5 mg/kg) or pretreated with pioglitazone (0.5 mg/kg) for 3 and 9 days. Compared to oral control group, the presence of pioglitazone significantly (p<0.05) increased the area under the plasma concentration-time curve (AUC) of verapamil by 48.6% (coad), 61.1% (3 days) and 56.5% (9 days), and the peak concentration($C_{max}$) by 65.1% (coad), 76.8% (3 days) and 66.4% (9 days). The absolute bioavailability (AB%) of verapamil was significantly (p<0.05) higher by 6.2% (coad), 6.7% (3 days), 6.5% (9 days) compared to control (4.2%), and presence of pioglitazone was no significant change in the terminal half-life ($t_{1/2}$) and the time to reach the peak concentration($T_{max}$) of verapamil. Our results indicate that pioglitazone significantly enhanced oral bioavailability of verapamil in rats, implying that presence of pioglitazone could be effective to inhibit the CYP3A4-mediated metabolism of verapamil in the intestine. Drug interactions should be considered in the clinical setting when verapamil is coadministrated with pioglitazone.

  • PDF

High Affinity Pharmacological Profiling of Dual Inhibitors Targeting RET and VEGFR2 in Inhibition of Kinase and Angiogeneis Events in Medullary Thyroid Carcinoma

  • Dunna, Nageswara Rao;Kandula, Venkatesh;Girdhar, Amandeep;Pudutha, Amareshwari;Hussain, Tajamul;Bandaru, Srinivas;Nayarisseri, Anuraj
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7089-7095
    • /
    • 2015
  • Clinical evidence shows that dual inhibition of kinases as well angiogenesis provides ideal therapeutic option in the treatment of medullary thyroid carcinoma (MTC) than inhibiting either of these with the events separately. Although treatment with dual inhibitors has shown good clinical responses in patients with MTC, it has been associated with serious side effects. Some inhibitors are active agents for both angiogenesis or kinase activity. Owing to narrow therapeutic window of established inhibitors, the present study aims to identify high affinity dual inhibitors targeting RET and VEGFR2 respectively for kinase and angiogenesis activity. Established inhibitors like Vandetanib, Cabozantinib, Motesanib, PP121, RAF265 and Sunitinib served as query parent compounds for identification of structurally similar compounds by Tanimoto-based similarity searching with a threshold of 95% against the PubChem database. All the parent inhibitors and respective similar compounds were docked against RET and VEGFR2 in order to retrieve high affinity compounds with these two proteins. AGN-PC-0CUK9P PubCID: 59320403 a compound related to PPI21 showed almost equal affinity for RET and VEGFR2 and unlike other screened compounds with no apparent bias for either of the receptors. Further, AGNPC- 0CUK9P demonstrated appreciable interaction with both RET and VEGFR2 and superior kinase activity in addition to showed optimal ADMET properties and pharmacophore features. From our in silico investigation we suggest AGN-PC-0CUK9P as a superior dual inhibitor targeting RET and VEGFR2 with high efficacy which should be proposed for pharmacodynamic and pharmacokinetic studies for improved treatment of MTC.

Solubility and In vivo Absorption Enhancement of Diclofenac Sodium by ${\beta}-Cyclodextrin$ Complexation (${\beta}$-시클로덱스트린과의 포접에의한 디플로페낙나트륨의 용해도 및 생체흡수율 증가)

  • Lee, Kyung-Tae;Kim, Jong-Hwan;Kim, Joo-Il;Kim, Seung-Jo;Seo, Hee-Kyoung;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.169-174
    • /
    • 1996
  • Inclusion complexes of diclofenac sodium with ${\beta}-cyclodextrin$ were prepared in aqueous solution, alkaline solution and solid phase. The interaction of diclofenac sodium with ${\beta}-cyclodextrin$ in pH 9.0 alkaline solution was evaluated by the solubility method and the instrumental analysis such as thermal analysis, infrared spectroscopy, X-ray diffractometry. The solubility of diclofenac sodium was increased linearly with the increase in the concentration of ${\beta}-cyclodextrin$up to 0.15 mol and showed that the aqueous solubility rate of diclofenac sodium was significantly increased by complex with ${\beta}-cyclodextrin$. The optimum composition of this complex was one molecule of ${\beta}-cyclodextrin$ included 1.59 molecular weight of diclofenac sodium as a guest molecule. The pharmacokinetic parameters of the diclofenac sodium and the complex with ${\beta}-cyclodextrin$ were studied in rats by oral route. $T_{max}$ between drug alone and inclusion complex showed significant difference to be 120 minute and 20 minute respectively. Both of $C_{max}$ and AUC of inclusion complex was about 40% higher than drug alone. It is estimated from the data in this study that complexation of diclofenac sodium with ${\beta}-cyclodextrin$ increased the absorption rate and improved the bioavalability of the diclofenac sodium by the formation of a water-soluble complexes.

  • PDF

Effect of Cimetidine and Phenobarbital on Metabolite Kinetics of Omeprazole in Rats

  • Park Eun-Ja;Cho Hea-Young;Lee Yong-Bok
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1196-1202
    • /
    • 2005
  • Omeprazole (OMP) is a proton pump inhibitor used as an oral treatment for acid-related gastrointestinal disorders. In the liver, it is primarily metabolized by cytochrome P-450 (CYP450) isoenzymes such as CYP2C19 and CYP3A4. 5-Hyroxyomeprazole (5-OHOMP) and omeprazole sulfone (OMP-SFN) are the two major metabolites of OMP in human. Cimetidine (CMT) inhibits the breakdown of drugs metabolized by CYP450 and reduces, the clearance of coad-ministered drug resulted from both the CMT binding to CYP450 and the decreased hepatic blood flow due to CMT. Phenobarbital (PB) induces drug metabolism in laboratory animals and human. PB induction mainly involves mammalian CYP forms in gene families 2B and 3A. PB has been widely used as a prototype inducer for biochemical investigations of drug metabolism and the enzymes catalyzing this metabolism, as well as for genetic, pharmacological, and toxicological investigations. In order to investigate the influence of CMT and PB on the metabolite kinetics of OMP, we intravenously administered OMP (30 mg/kg) to rats intraperitoneally pretreated with normal saline (5 mL/kg), CMT (100 mg/kg) or PB (75 mg/kg) once a day for four days, and compared the pharmacokinetic parameters of OMP. The systemic clearance ($CL_{t}$) of OMP was significantly (p<0.05) decreased in CMT-pretreated rats and significantly (p<0.05) increased in PB-pretreated rats. These results indicate that CMT inhibits the OMP metabolism due to both decreased hepatic blood flow and inhibited enzyme activity of CYP2C19 and 3A4 and that PB increases the OMP metabolism due to stimulation of the liver blood flow and/or bile flow, due not to induction of the enzyme activity of CYP3A4.

Pharmacokinetic Interaction between Nifedipine and Quercetin in Rabbits (니페디핀과 켈세틴의 토끼에서의 약물동태학적 상호작용)

  • Han, Hyo-Kyung;Lee, Il-Kwun;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.283-288
    • /
    • 2004
  • The pharmacokinetics of nifedipine was studied after oral coadministration of nifedipine (5 mg/kg) with quercetin (1.5, 7.5, 15 and 30 mg/kg, respectively) and 0.5 h or 3days pretreatment with quercetin (1.5 and 7.5mg/kg) in rabbits. Pretreatment of quercetin significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) increased the plasma concentration of nifedipine, but not significant in coadministraiton. The area under the plasma concentration-time curve (AUC) and the peak concentration $(C_{max})$ of nifedipine pretreated with quercetin were increased significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) compared to the control. By coadministration of quercetin, only 7.5 mg/kg of quercetin increased plasma AUC and $C_{max}$ of nifedipine significantly (p<0.05) compared to the control. Plasma AUC of intravenous nifedipine (1 mg/kg) is $4235\;{\pm}\;1192\;ng/ml{\cdot}hr$. Pretreatment of quercetin significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) increased the absolute bioavailability (AB%) of nifedipine to 23.9-29.2% compared to the control (17.8%). Coadministration of quercetin showed no significant effect on the AB% of nifedipine except for 7.5 mg/kg. It is suggested that quercetin alters disposition of nifedipine by inhibition of P-glycoprotein efflux pump and its first-pass metabolism. The dosage of nifedipine should be adjusted when it is administered chronically with quercetin in a clinical situation.

Pharmacokinetics Interaction between Cardiotonic Pills and Cilostazol in Rats (렛트를 이용한 심적환과 cilostazol에 관한 상호작용 연구)

  • Kim, Ekyune
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.123-128
    • /
    • 2016
  • The object of this study was to obtain accurate information about the co-administration effects of cardiotonic pills on the pharmacokinetics of cilostazol were observed as a process of the comprehensive and integrative medicine. Cilostazol is a synthetic anti-platelet and vasodilator agent developed for the treatment of intermittent claudication resulting from peripheral arterial disease. By increasing intracellular cyclic adenosine monophosphate (cAMP), cilostazol induces the activation of protein kinase A, which activates endothelial nitric oxide synthase. In order to evaluate the effect of a single or repeated cardiotonic pill dose on the pharmacokinetics of cilostazol, a single dose of pure_distilled water or a colloidal suspension of distilled water and cardiotonic pills were administered to the control and test groups, respectively. After 30 min, both groups were administered cilostazol. Plasma was collected 30min before administration, and 0.25, 0.5, 0.45, 1, 2, 4, 6, 8, and 24h after the end of cilostazol treatment. We then evaluated the pharmacokinetic changes observed with cilostazol between the control and test groups. No statistically significant differences were observed. These findings demonstrated that a single dose of cardiotonic pills did not affect the pharmacokinetics of cilostazol. The results obtained in this study suggest that co-administration of cardiotonic pills and cilostazol may not affect the bioavailability of cilostazol as a potential drug interaction.

Effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after oral administration

  • Chen, Yin Bin;Wang, Yu Fang;Hou, Wei;Wang, Ying Ping;Xiao, Sheng Yuan;Fu, Yang Yang;Wang, Jia;Zheng, Si Wen;Zheng, Pei He
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.209-214
    • /
    • 2017
  • Background: Both ginsenoside Re and B-complex vitamins are widely used as nutritional supplements. They are often taken together so as to fully utilize their antifatigue and refreshing effects, respectively. Whether actually a drug-nutrient interaction exists between ginsenoside Re and B-complex vitamins is still unknown. The objective of this study was to simultaneously investigate the effect of B-complex vitamins on the antifatigue activity and bioavailability of ginsenoside Re after their oral administration. The study results will provide valuable theoretical guidance for the combined utilization of ginseng and B-complex vitamins. Methods: Ginsenoside Re with or without B-complex vitamins was orally administered to mice to evaluate its antifatigue effects and to rats to evaluate its bioavailability. The antifatigue activity was evaluated by the weight-loaded swimming test and biochemical parameters, including hepatic glycogen, plasma urea nitrogen, and blood lactic acid. The concentration of ginsenoside Re in plasma was determined by liquid chromatography-tandem mass spectrometry. Results: No antifatigue effect of ginsenoside Re was noted when ginsenoside Re in combination with B-complex vitamins was orally administered to mice. B-complex vitamins caused to a reduction in the bioavailability of ginsenoside Re with the area under the concentration-time curve from zero to infinity markedly decreasing from $11,830.85{\pm}2,366.47h{\cdot}ng/mL$ to $890.55{\pm}372.94h{\cdot}ng/mL$. Conclusion: The results suggested that there were pharmacokinetic and pharmacodynamic drug-nutrient interactions between ginsenoside Re and B-complex vitamins. B-complex vitamins can significantly weaken the antifatigue effect and decrease the bioavailability of ginsenoside Re when simultaneously administered orally.