• Title/Summary/Keyword: Pharmacodynamic study

Search Result 50, Processing Time 0.027 seconds

Pharmacodynamic and pharmacokinetic interactions between herbs andwestern drugs

  • Lee, Ju-Young
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.207-214
    • /
    • 2008
  • In recent years, the combined use of Herbal medicines and Western drugs has been increasing. Though certain problems may occur when both types of medicines are taken together, they havenot been adequately analyzed. It was reported that anticoagulation was enhanced in addition tobleeding when patients took long-term warfarin therapy in combination with Salvia miltiorrhiza(danshen), and laxative herbs accelerate intestinal transit and interfere with the absorption. Herbal constituents, curcumin, ginsenosides, piperine, catechins and silymarin were found to beinhibitors of P-glycoprotein. St John's wort induces the intestinal expression of P-glycoprotein. Anthraquinone, quercetin and coumarins were found to be a potent inhibitor of P-450. Glycyrrhizin or liquorice extracts, Garlic and St John's wort are a potent inducer of CYP3A4. This review provides a critical overview of interactions between herbal medicines and other drugs. Hence, it is necessary to study the pharmacodynamic and pharmacokinetic interactions of many herbal medicines between western drugs.

Pharmacokinetic-Pharmacodynamic Modeling of a Direct Thrombin Inhibitor, Argatroban, in Rats

  • Park, Eun-Hye;Shin, Beom-Soo;Yun, Chi-Ho;Lee, Mann-Hyung;Yoo, Sun-Dong
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.373-379
    • /
    • 2009
  • This study was conducted to develop a pharmacokinetic-pharmacodynamic (PK/PD) model of a direct thrombin inhibitor, argatroban to predict the concentration-effect profiles in rats. Argatroban was i.v. injected to rats at 0. 2, 0.8 and 3.2 mg/kg doses (n = 4-5 per dose), and plasma drug levels were determined by a validated LC/MS/MS assay. The pharmacokinetics of argatroban was linear over the i.v. dose range studied. The thrombin time (TT) and the activated partial thromboplastin time (aPTT) were measured in rat plasma and they were found to linearly increase with increasing the dose. A 2-compartment pharmacokinetic model linked with an indirect response pharmacodynamic model was successfully utilized to evaluate the drug concentration-response relationship.

Pharmacokinetic and Pharmacodynamic Modeling of a Proton Pump Inhibitor

  • Bae, Kyun-Seop;Jang, In-Jin
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.223-224
    • /
    • 2002
  • Pharmacokinetic (PK) and pharmacodynamic (PD) study of a new reversible proton pump inhibitor (YH1885, Yuhan Pharmaceutical Co.) was done as a phase 1 clinical trial in Seoul national University Hospital Clinical trialcenter. Single dose of 60, 100, 150, 200, and 300mg were administered to total 20 healthy subjects under fasting state. Six subjects were given 100 mg after food and 12 subjects were given multiple doses of 150 and 300 mg every day for 7 days under fasting state. (omitted)

  • PDF

Pharmacodynamic Modeling of Vincristine in Lymphoma Patients (림프종 환자에서 회귀모형을 이용한 vincristine의 약물 용량 예측 인자 및 부작용 모델 연구)

  • Seo, Jeong-Won;Kim, Dong-Hyun;Yun, Jin-Sang;Kim, Seon-Hwa;Choi, Bo-Yoon;Oh, Jung-Mi;Kwon, Kwang-Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.145-155
    • /
    • 2011
  • The objective of this study was to determine whether any pretreatment parameters were associated with pharmacological effect or toxicity parameters after vincristine administration and to describe a mathematical model, which explains the interpatient pharmacodynamic variability. The relationship between patient characteristics and vincristine dose and hematological toxicity were evaluated. 68 pediatric and adolescence patients and 107 adults with acute lymphoblastic leukemia were treated with vincristine $1.5mg/m^2/day$ IV and other anticancer drugs as scheduled. Complete blood counts and other blood test results were obtained. The input variables were age, gender, weight, lean body weight (LBW), height, body surface area, vincristine dose and total vincristine dose. The outcome measures were nadir values (white blood cells, absolute neutrophil counts, hemoglobin, and platelets); the absolute decrease, relative decrease, and survival fraction of blood cells. Polynomial regression analysis was carried out to determine the other significant covariates. The variability of $WBC_{nadir}$ was modeled with good precision and accuracy with a two-covariate model. This model should be validated and improved on with further clinical data. We believe that such pharmacodynamic modeling should be explored further to determine its performance and clinical relevance compared with modeling using pharmacokinetic parameter.

Clinical Evaluation of a Low-pain Long Microneedle for Subcutaneous Insulin Injection

  • Lee, Ghunil;Ma, Yonghao;Lee, Yong-ho;Jung, Hyungil
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.309-316
    • /
    • 2018
  • Microneedles (MNs) are being developed to overcome the limitations of the conventional hypodermic needle, e.g. the injection pain. In this study, we conducted an analysis of clinical pain and bleeding at the site of MN insertion and evaluated the insulin pharmacodynamic profile compared with parameters obtained with a conventional pen needle. MN insertion into the skin of 25 healthy adults or 15 patients with type 2 diabetes (T2D) revealed significantly less pain relative to a conventional hypodermic pen needle, thus reducing pain scores from $2.1{\pm}1.9$ to $21.3{\pm}1.4$ ($mean{\pm}standard$ deviation [SD]). Besides, no bleeding was observed when the MN was used. In the insulin pharmacodynamic assay, no significant differences were observed in the blood glucose-lowering effect between the pen needle and MN. Based on these results, the MN is expected to be a good substitute for conventional hypodermic pen needles and improve the quality of life of patients by significantly reducing the pain associated with insulin treatment.

Methods for Pharmacodynamic Analysis and Proposed Protocols for Bioequivalence Study of Acarbose (Acarbose 제제의 약력학적 평가 및 생물학적동등성 시험법에 대한 연구)

  • Bae, Jung-Woo;Jang, Choon-Gon;Lee, Seok-Yong
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.440-446
    • /
    • 2007
  • Arcabose is a competitive inhibitor of the intestinal ${\alpha}$-glucosidases and reduces the postprandial digestion and absorption of carbohydrate and disaccharides. Due to its negligible oral absorption, measuring drug concentration in the plasma is impractical. Thus, the common pharmacokinetic study is not available to determine the bioequivalence of the generic acarbose preparations. The aim of this study is the establishment of pharmacodynamic assessment method for the bioequivalence test of the generic acarbose preparations. Placebo-controlled cross-over ($3{\times}3$) clinical study was conducted in 23 healthy volunteers. Volunteers received a single oral dose of placebo, reference drug ($Glucoby^{(R)}$ 100 mg, Lot # D043) or test drug ($Glucoby^{(R)}$ 100 mg, Lot # E005) just before breakfast, then blood samples for evaluation of serum glucose and insulin levels were taken during for 4 hours. $C_{max},\;AUC_{0-2},\;AUC_{0-4},\;{\Delta}C_{max},\;{\Delta}AUC_{0-2}\;and\;{\Delta}AUC_{0-4}$ of the postprandial plasma glucose level significantly decreased when a single dose of acarbose 100 mg preparations was administered. However, any significant difference was not detected between the groups taken the reference drug and the test drug. These results proposed that the pharmacodynamic protocols of this study is suitable to use for bioequivalence test of acarbose preparations. On the basis of the results of this study and the data of literature on this subject, the standard protocols of bioequivalence study of acarbose preparation are proposed.

Quantitative analysis of the effect of fraction of inspired oxygen on peripheral oxygen saturation in healthy volunteers

  • Kang, Bong Jin;Kim, Myojung;Bang, Ji-Yeon;Lee, Eun-Kyung;Choi, Byung-Moon;Noh, Gyu-Jeong
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.20 no.2
    • /
    • pp.73-81
    • /
    • 2020
  • Background: The international organization for standardization (ISO) 80601-2-61 dictates that the accuracy of a pulse oximeter should be assessed by a controlled desaturation study. We aimed to characterize the relationship between the fraction of inspired oxygen (FiO2) and peripheral oxygen saturation (SpO2) using a turnover model by retrospectively analyzing the data obtained from previous controlled desaturation studies. Materials and Methods: Each volunteer was placed in a semi-Fowler's position and connected to a breathing circuit to administer the hypoxic gas mixture containing medical air, oxygen, nitrogen, and carbon dioxide. Volunteers were exposed to various levels of induced hypoxia over 70-100% arterial oxygen saturation (SaO2). The study period consisted of two rounds of hypoxia and the volunteers were maintained in room air between each round. FiO2 and SpO2 were recorded continuously during the study period. A population pharmacodynamic analysis was performed with the NONMEM VII level 4 (ICON Development Solutions, Ellicott City, MD, USA). Results: In total, 2899 SpO2 data points obtained from 20 volunteers were used to determine the pharmacodynamic characteristics. The pharmacodynamic parameters were as follows: kout = 0.942 1/min, Imax = 0.802, IC50 = 85.3%, γ = 27.3. Conclusion: The changes in SpO2 due to decreases in FiO2 well explained by the turnover model with inhibitory function as a sigmoidal model.

Effect of Food on Pharmacokinetics and Pharmacodynamics of Fenofibric Acid after a Single Oral Dose of Fenofibrate Sustained-Release Capsule (식단에 따르는 페노피브레이트 서방성 캡슐의 1회 경구 투여 후 약물동태학 및 약물동력학의 평가)

  • Yun, Hwi-yeol;Kim, Joung-hyun;Lee, Eun Joo;Chung, Soo Youn;Choi, Sun-oK;Kim, Hyung Kee;Kwon, Jun-tack;Kang, Wonku;Kwon, Kwang-il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.15 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • We examined the effects of food on pharmacokinetic and pharmacodynamic properties of fenofibrate released from sustained-release(SR) capsule as therapy for hypolipidemia. Twenty-four healthy volunteers were used in $3{\times}3$ crossover pharmacokinetic and pharmacodynamic study; Additional six volunteers were used as a control group (i.e., no fenofibrate administration). A single dose of fenofibrate (SR capsule, 250 mg) was administered on three occasions: after overnight fasting, after consumption of a standard breakfast, and after a high-fat breakfast. Serial blood samples were collected for the next 72 hours. Plasma fenofibric acid concentrations were measured by high performance liquid chromatography, and pharmacokinetic parameters were calculated using ADAPT II program. Plsama triglyceride concentrations were measured by blood chemistry analyzer (CH-100). The pharmacokinetic parameters were significantly affected by food intake. The high-fat breakfast affected the rate of absorption of fenofibrate more than did the standard breakfast and fasted conditions. Plasma concentrations of triglyceride at 24 hours decreased significantly after the administration of fenofibrate compared with the concentration at 0 hours(P<0.05). In healthy volunteers, the bioavailability of fenofibrate was greater when administered via sustained-release capsules immediately after the consumption of food than after fasting condition.

  • PDF

Modified Pharmacokinetic/Pharmacodynamic model for electrically activated silver-titanium implant system

  • Tan, Zhuo;Orndorff, Paul E.;Shirwaiker, Rohan A.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.3
    • /
    • pp.127-141
    • /
    • 2015
  • Silver-based systems activated by low intensity direct current continue to be investigated as an alternative antimicrobial for infection prophylaxis and treatment. However there has been limited research on the quantitative characterization of the antimicrobial efficacy of such systems. The objective of this study was to develop a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model providing the quantitative relationship between the critical system parameters and the degree of antimicrobial efficacy. First, time-kill curves were experimentally established for a strain of Staphylococcus aureus in a nutrientrich fluid environment over 48 hours. Based on these curves, a modified PK/PD model was developed with two components: a growing silver-susceptible bacterial population and a depreciating bactericidal process. The test of goodness-of-fit showed that the model was robust and had good predictability ($R^2>0.7$). The model demonstrated that the current intensity was positively correlated to the initial killing rate and the bactericidal fatigue rate of the system while the anode surface area was negatively correlated to the fatigue rate. The model also allowed the determination of the effective range of these two parameters within which the system has significant antimicrobial efficacy. In conclusion, the modified PK/PD model successfully described bacterial growth and killing kinetics when the bacteria were exposed to the electrically activated silver-titanium implant system. This modeling approach as well as the model itself can also potentially contribute to the development of optimal design strategies for other similar antimicrobial systems.

Pharmacokinetic-Pharmacodynamic Modeling for the Relationship between Glucose-Lowering Effect and Plasma Concentration of Metformin in Volunteers

  • Lee, Shin-Hwa;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.806-810
    • /
    • 2004
  • Metformin is a biguanide antihyperglycemic agent often used for the treatment of non-insulin dependent diabetics (NIDDM). In this study, the pharmacokinetics and pharmacodynamics of metformin were investigated in Korean healthy volunteers during a fasting state for over 10 h. In order to evaluate the amount of glucose-lowering effect of metformin, the plasma concentrations of glucose were measured for a period of 10 h followed by the administration of metformin (oral 500 mg) or placebo. In addition, the concentration of metformin in blood samples was determined by HPLC assay for the drug. All volunteers were consumed with 12 g of white sugar 10 minutes after drug intake to maintain initial plasma glucose concentration. The time courses of the plasma concentration of metformin and the glucose-lowering effect were analyzed by nonlinear regression analysis. The estimated $C_{max}$, $T_{max}$, $CL_{t}$/F (apparent clearance), V/F(apparent volume of distribution), and half-life of metformin were 1.42$\{pm}$0.07 $\mu\textrm{g}$/mL, 2.59$\{pm}$0.18h, 66.12$\{pm}$4.6 L/h, 26.63 L, and 1.54 h respectively. Since a significant counterclock-wise hysteresis was found for the metformin concentration in the plasma-effect relationship, indirect response model was used to evaluate pharmacodynamic parameters for metformin. The mean concentration at half-maximum inhibition $IC_{50}$, $k_{in}$, $k_{out}$ were 2.26 $\mu\textrm{g}$/mL, 83.26 $H^{-1}$, and 0.68 $H^{-1}$, respectively. Therefore, the pharmacokinetic-pharmacodynamic model may be useful in the description for the relationship between plasma concentration of metformin and its glucose-lowering effect.