• Title/Summary/Keyword: Pharmacoat

Search Result 3, Processing Time 0.017 seconds

Pharmacoat Coating in an Aqueous System : The Dissolution Behavior and Reduction in Coating Time

  • Sekigawa Fujio;Muto Hiroaki;Araume Kiyoshi
    • Journal of Pharmaceutical Investigation
    • /
    • v.20 no.3
    • /
    • pp.51-76
    • /
    • 1990
  • It is sometimes said lately that the pH of the human gastric juice is significantly different among individuals. Thus, the dissolution behavior of coated solid dosage forms should preferably be independent of the pH of the test solution. With these points as a background, the effect of pH on the dissolution velocity of coated tablets was studied to compare that of Pharmacoat with other gastric soluble film coating materials. Three viscosity types of Pharmacoat have been available(3, 6 and 15cP) until now. the 6cP type has been considered to be the most suitable for a tablet coating amongst the three types. The 3 cP type with a low degree of polymerization, is capable of providing high concentration, but the film strength is so inferior that sometimes cracking of the film may occur. On the other hand, in the case of the 15cP type, high polymer concentration cannot be achieved because of the high dgree of polymerization, and thus it is uneconomical for coating. Now, there is a strong demand to reduce the coating time even when HPMC is used in the 6cP type in order to reduce the coating cost. In order to improve this problem, we have concentrated our attention on reducing the viscosity value of HPMC to an allowable lower limit from 6cP. As a result of this study, it was found that the reduction of the viscosity value to around 4.5cP enabled the use of a higher solution concentration and an incidental shorter coating time without giving any substantial adverse effects on the properties of coated preparations. These experiment results are presented in the later part of this presentation. Based on this study, we have added the viscosity type of 4.5cP as one of the Pharmacoat products as Pharmacoat-645.

  • PDF

The Formulation and Dissolution Properties of Oral Sustained Release Sulindac Delivery System (설린닥의 경구용 지속성 제제설계 및 용출특성)

  • Rhee, Gye-Ju;Park, Sun-Hee;Suh, Sung-Su;Whang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.48-59
    • /
    • 1997
  • Sustained release matrix tablets, pellets, and coated pellets for the delivery of sulindac were prepared using cellulose derivatives at various ratios, and evaluated for the dis solution pattern. The release of sulindac, from matrix tablets prepared with low viscosity HPMC was relatively fast, and especially the tablets made of Metolose SM released all of sulindac within 1 hr. The release of drug from tablets made of other HPMC derivatives were retarded in the order of the following: Pharmacoat 645>Pharmacoat 606>Pharrnacoat 606+HPC-L>HPC-L. The most sustained release pattern was observed with the preparation of high viscous polymer. Metolose 90 SH. While release of sulindac, from matrix type pellet containing 10mg/cap of Metolose 90 SH or 60 SH was completed within 1 hr, a prolonged release formulation (30% in 1 hr) was obtained by the inclusion of EC. Pellets coated with HPMC showed a fast release pattern (${\geq}$ 80% within 2 hrs), whereas pellets coated with HPMC and EC (molar ratio 1 : 1) showed a sustained release pattern (${\geq}$ 80% in 12 hrs), vath the release from EC pellets being the most sustained. Fast (naked) and slow release pellets coated with EC, Metolose 60SH 50cps and propylene glycol. and enteric pellets coated with HPMCP 55 and Myvacet$^{\circledR}$ were prepared, and combined at various ratios for the assessment of dissolution pattern. The result indicates the possibility that the development of 24 hr sustained release delivery systems containing sulindac for oral administration could be achieved by means of combining sustained and fast release pellets at a proper portion.

  • PDF