• Title/Summary/Keyword: Phage-antibiotic combination

Search Result 2, Processing Time 0.015 seconds

Synergistic Effect of Bacteriophage and Antibiotic against Antibiotic-Resistant Salmonella Typhimurium

  • Petsong, Kantiya;Vongkamjan, Kitiya;Ahn, Juhee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.189-194
    • /
    • 2020
  • In this study, we investigated the efficacy of Salmonella phage P22 combined with antibiotics to inhibit antibiotic-resistant S. Typhimurium CCARM 8009. The synergistic effect of phage P22 and antibiotics was evaluated by using disk diffusion and broth dilution assays. The development of Antimicrobial resistance was determined after time-kill assay. The antibiotic susceptibility assay showed the inhibition zone sizes around the antibiotic disks were increased up to 78.8% in the presence of phage (cefotaxime; 13.6%, chloramphenicol; 19.3%, ciprofloxacin; 12.7% and erythromycin; 78.8%). The minimum inhibitory concentration values of the combination treatment significantly decreased from 256 to 64 mg/mL for tetracycline, 8 to 4 mg/mL for chloramphenicol, 0.0156 to 0.0078 mg/mL for ciprofloxacin, 128 to 64 mg/mL for erythromycin and 512 to 256 mg/mL for streptomycin. The number of S. Typhimurium CCARM 8009 was approximately 4-log lower than that of the control throughout the combination treatment with phage P22 and ciprofloxacin delete at 37℃ for 20 h. The results indicate that the development of antimicrobial resistance in S. Typhimurium could be reduced in the presence of phage treatment. This study provides promising evidence for the phage-antibiotic combination as an effective treatment to control antibiotic-resistant bacteria.

Therapeutic strategies to manage chronic wounds by using biofilm dispersal mechanisms (생물막 분산기작을 이용한 만성창상의 치료전략)

  • Kim, Jaisoo;Kim, Min-Ho
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.87-102
    • /
    • 2019
  • Most chronic wounds persist in the inflammatory phase during wound healing due to the biofilm. Biofilms are resistant to antibiotics, weakening penetration, resistance to biocides and weakening local immune responses. The biofilm is firmly attached to the surrounding tissues and is very difficult to remove. Therefore, strategies to remove hard biofilms without damaging surrounding tissue are very important. One of possible strategies is dispersal. So many studies have been done to develop new strategies using dispersal mechanisms. In this review paper, especially chemotaxis, phage therapy, polysaccharides, various enzymes (glycosidases, proteases, and deoxyribonucleases), surfactants, dispersion signals, autoinducers, inhibitors were introduced. Combination therapies with other therapies such as antibiotic therapy were also introduced. It is expected that the possibility of treatment of chronic wound infection using the knowledge of the biofilm dispersal mechanisms presented in this paper will be higher.