• 제목/요약/키워드: Peukert Law

검색결과 6건 처리시간 0.02초

Enhanced Coulomb Counting Method for State-of-Charge Estimation of Lithium-ion Batteries based on Peukert's Law and Coulombic Efficiency

  • Xie, Jiale;Ma, Jiachen;Bai, Kun
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.910-922
    • /
    • 2018
  • Conventional battery state-of-charge (SoC) estimation methods either involve sophisticated models or consume considerable computational resource. This study constructs an enhanced coulomb counting method (Ah method) for the SoC estimation of lithium-ion batteries (LiBs) by expanding the Peukert equation for the discharging process and incorporating the Coulombic efficiency for the charging process. Both the rate- and temperature-dependence of battery capacity are encompassed. An SoC mapping approach is also devised for initial SoC determination and Ah method correction. The charge counting performance at different sampling frequencies is analyzed experimentally and theoretically. To achieve a favorable compromise between sampling frequency and accumulation accuracy, a frequency-adjustable current sampling solution is developed. Experiments under the augmented urban dynamometer driving schedule cycles at different temperatures are conducted on two LiBs of different chemistries. Results verify the effectiveness and generalization ability of the proposed SoC estimation method.

간결한 예측 모형에 기반한 납축전지의 정전류-정전압 충전시간 특성화 (CC-CV Charging Time Characteristics of Lead-Acid Batteries Based on Compact Estimation Model)

  • 한정견;신동화
    • 대한임베디드공학회논문지
    • /
    • 제11권5호
    • /
    • pp.305-312
    • /
    • 2016
  • Modern embedded systems are typically operated by the rechargeable batteries in our daily life. Since charge of batteries is considered as an time consuming task, there have been extensive efforts to manage the charge time from the perspective of materials, circuits, and systems. Estimation of battery charge time is one of the essential information to design the charge circuitry. A compact macro model for the constant-current and constant-voltage charge protocol was recently introduced, which gives us a quick estimation of charge time with similar shape to the famous Peukert's law for discharge time estimation. The CC-CV charging protocol is widely used for Lithium-based batteries and Lead-acid batteries. In this paper, we characterize the lead-acid battery by measurement to extract the model coefficients, which was not covered by the previous studies. By our proposed model, the key coefficient Kcc results in 1.18-1.31, which is little bit higher than that of Lithium batteries. The accuracy of our model is within the range of ${\pm}10%$ error, which is compatible with the other studies such as Peukert's law.

Estimation of Hovering Flight Time of Battery-Powered Multicopters

  • Cho, Mun jin;Han, Cheolheui
    • 항공우주시스템공학회지
    • /
    • 제15권4호
    • /
    • pp.11-20
    • /
    • 2021
  • The estimation of hovering flight time of multicopters using the battery power propulsion system is important for the development and design of the aircraft and its operation. For a given operational weight, the maximum possible battery weight can be decided using both a conventional energy density method and a new Peukert law. In the present study, the hovering flight time is predicted using both methods. The specific data of multicopters in the published literatures were employed for the computation of the hovering flight time. The results were validated with the measured data. The effect of figure of merit of propeller, battery discharging process on the hovering flight time was evaluated, Finally, the effect of the battery cell and package connection types on the hovering time was investigated. It was found that the combination of serial battery cell connections and parallel package connection is the bast in the endurance maximization aspect. As the cell number increases in a package, the hovering flight time is increased. There exists the max. battery ratio for the given takeoff gross weight.

프로펠러 성능 시험 데이터베이스를 활용한 멀티콥터 체공시간 예측방법 개발 (Development of Endurance Estimation Method for Multicopters Using Propeller Database)

  • 최인서;한철희
    • 융복합기술연구소 논문집
    • /
    • 제11권1호
    • /
    • pp.33-37
    • /
    • 2021
  • The application of multicopters using a battery is limited by the short endurance due to the low energy density. A propeller is one of crucial components that determine the performance of the multicopter. In the present study, a systematic method for predicting the endurance of multicopters is described. Propeller performance database are constructed using the data from UIUC Propeller Data Site. Using the 'trendline' function of MS Excel software, the performance of the commercial propellers are represented as a function of polynomials. The multicopter's endurance is computed iteratively using Peukert's Law and considering the voltage drop effect. We evaluated the endurance of multicopters that use commercial propellers. The endurance of the multicopter was within the range of 28 min. to 36 min. It is expected that the present method can be utilized for optimal propeller selection for the given multicopters.

Kt Factor Analysis of Lead-Acid Battery for Nuclear Power Plant

  • Kim, Daesik;Cha, Hanju
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권4호
    • /
    • pp.460-465
    • /
    • 2013
  • Electrical equipments of nuclear power plant are divided into class 1E and non-class 1E. Electrical equipment and systems that are essential to emergency reactor shutdown, containment isolation, reactor core cooling, and containment and reactor heat removal, are classified as class 1E. batteries of nuclear power plant are divided into four channels, which are physically and electrically separate and independent. The battery bank of class 1E DC power system of the nuclear power plant use lead-acid batteries in present. The lead acid battery, which has a high energy density, is the most popular form of energy storage. Kt factor of lead-acid battery is used to determine battery size and it is one of calculatiing coefficient for capacity. this paper analyzes Kt factor of lead-acid battery for the DC power system of nuclear power plant. In addition, correlation between Kt parameter and peukert's exponent of lead-acid battery for nuclear plant are discussed. The analytical results contribute to optimize of determining size Lead-acid battery bank.

PI 상태관측기를 이용한 리튬폴리머 배터리 SOC 추정 (The State of Charge Estimation for Lithium-Polymer Battery using a PI Observer)

  • 이준원;조종민;김성수;차한주
    • 전력전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, a lithium polymer battery (LiPB) is simply expressed by a primary RC equivalent model. The PI state observer is designed in Matlab/Simulink. The non-linear relationship with the OCV-SOC is represented to be linearized with 0.1 pu intervals by using battery parameters obtained by constant-current pulse discharge. A state equation is configured based on battery parameters. The state equation, which applied Peukert's law, can estimate SOC more accurately. SOC estimation capability was analyzed by utilizing reduced Federal Test Procedure (FTP-72) current profile and using a bi-directional DC-DC converter at temperature ($25^{\circ}C$). The PI state observer, which is designed in this study, indicated a SOC estimation error rate of ${\pm}2%$ in any of the initial SOC states. The PI state observer confirms a strong SOC estimation performance despite disturbances, such as modeling errors and noise.