• Title/Summary/Keyword: Petroselinum sativum

Search Result 3, Processing Time 0.017 seconds

Anticancer Activity of Petroselinum sativum Seed Extracts on MCF-7 Human Breast Cancer Cells

  • Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5719-5723
    • /
    • 2013
  • Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to $1000{\mu}g/ml$ of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of $50{\mu}g/ml$ and above of PSA and $100{\mu}g/ml$ and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and $1000{\mu}g/ml$ of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and $1000{\mu}g/ml$ of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and $1000{\mu}g/ml$ of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells.

Cytotoxicity Assessments of Portulaca oleracea and Petroselinum sativum Seed Extracts on Human Hepatocellular Carcinoma Cells (HepG2)

  • Farshori, Nida Nayyar;Al-Sheddi, Ebtesam Saad;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6633-6638
    • /
    • 2014
  • The Pharmacological potential, such as antioxidant, anti-inflammatory, and antibacterial activities of Portulaca oleracea (PO) and Petroselinum sativum (PS) extracts are well known. However, the preventive properties against hepatocellular carcinoma cells have not been explored so far. Therefore, the present investigation was designed to study the anticancer activity of seed extracts of PO and PS on the human hepatocellular carcinoma cells (HepG2). The HepG2 cells were exposed with $5-500{\mu}g/ml$ of PO and PS for 24 h. After the exposure, cell viability by 3-(4,5-dimethylthiazol-2yl)-2,5-biphenyl tetrazolium bromide (MTT) assay, neutral red uptake (NRU) assay, and cellular morphology by phase contrast inverted microscope were studied. The results showed that PO and PS extracts significantly reduced the cell viability of HepG2 in a concentration dependent manner. The cell viability was recorded to be 67%, 31%, 21%, and 17% at 50, 100, 250, and $500{\mu}g/ml$ of PO, respectively by MTT assay and 91%, 62%, 27%, and 18% at 50, 100, 250, and $500{\mu}g/ml$ of PO, respectively by NRU assay. PS exposed HepG2 cells with $100{\mu}g/ml$ and higher concentrations were also found to be cytotoxic. The decrease in the cell viability at 100, 250, and $500{\mu}g/ml$ of PS was recorded as 70%, 33%, and 15% by MTT assay and 63%, 29%, and 17%, respectively by NRU assay. Results also showed that PO and PS exposed cells reduced the normal morphology and adhesion capacity of HepG2 cells. HepG2 cells exposed with $50{\mu}g/ml$ and higher concentrations of PO and PS lost their typical morphology, become smaller in size, and appeared in rounded bodies. Our results demonstrated preliminary screening of anticancer activity of Portulaca oleracea and Petroselinum sativum extracts against HepG2 cells, which can be further used for the development of a potential therapeutic anticancer agent.

Complete Nucleotide Sequence Analysis and Structural Comparison of 3 members of Tomato Phenylalanine ammonia-lyase gene (토마토에서 분리한 3종류의 Phenylalanine ammonia-lyase gene에 대한 염기서열 및 특성비교)

  • 여윤수;예완해;이신우;배신철;류진창;장영덕
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.41-47
    • /
    • 1999
  • Phenylalanine ammonia-lyase (PAL; EC 4, 3, 1, 5) genomic clones were isolated from tomato(Lycopersicon esculentum L.) genomic DNA libraries using tomato PAL5 cDNA sequences as probes. The nucleotide sequences of tPAL1, tPAL4 and tPAL5 were compared. tPAL5 contains an open reading frame encoding a polypeptide of 722 amino acids, interrupted by a 710 bp intron in the codon for the amino acid 139. tPAL1 encodes a polypeptide of 249 amino acids which is much shorter than tPAL5 gene due to a premature stop codon and does not contain an intron. tPAL4 encodes a polypeptide of 357 amino acids, interrupted by a 305 bp intron in the codon for the amino acid 138. Premature stop codons observed in tPAL1 and tPAL4 gene produce a short polypeptide rather than a normal polypeptide (722 aa). tPALl shows 87.2% homology with tPAL4 and 85.3% homology with tPAL5 gene whereas tPAL4 showes 91.4% homology with tPAL5 at nucleotide level. In general, phylogenetic analysis showed that genes isolated from tomato, potato, and sweet potato were belong to the same group and another dicot plants such as parsley, bean, soybean, pea and alfalfa formed another group. PAL genes isolated from rice and yeast showed very low homology with other PAL genes and formed the other group.

  • PDF