• Title/Summary/Keyword: Petroleum emulsion

Search Result 21, Processing Time 0.033 seconds

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

Synthesis of $LiMn_2O_4$ Cathode Materials by Emulsion Method and Its Electrochemical Properties

  • Youn Kyu Choi;Bok Hee Kim
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.250-254
    • /
    • 1999
  • Synthesis of the spinel $LiMn_2O_4$ by emulsion method was investigated. $LiOH.H_2O \;and \;Mn(NO_3)_2.6H_2O$ were used as starting materials to prepare mixed aqueous solution (0.5 mol/$\ell$ for the $LiMn_2O_4$). Kerosene, paraffin oil and span 80 were used for organic phase. The aqueous solutioin and organic phase were mixed in the ratio of 2:1 and emulsified at the speed of 4000 rpm for 5 min. The prepared emulsions were dropped into the petroleum heated at $170^{\circ}C$ to evaporate water in the silicon oil bath, dried at $120^{\circ}C$ in the oven the remove petroleum and calcined at temperature ranges from 600 to $900^{\circ}C$ for 48 hrs. The characteristics of powders were investigated by XRD, SEM, BET and electrochemical properties of synthesized cathode materials were measured with Galvanostatic system. $Li_{1.05}Mn_2O_4$ calcined at $800^{\circ}C$ for 48 hrs showed initial discharge capacity of 125.9mAH/g.

  • PDF

Demulsification of Petroleum Emulsion by Streptomyces sp. 8321 (Streptomyces sp. 8321에 의한 석유 유상액의 탈유화)

  • Ko, Sung-Hwan;Lee, Deuk-Soo;Kim, Sang-Jin;Lee, Hong Kum
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.162-168
    • /
    • 1998
  • The characteristics of demulsification of petroleum emulsion by Streptomyces sp. 8321 were investigated. Demulsification ability of Streptomyces sp. 8321 appeared to be confined within the spores. Spore surface hydrophobicity was increased with culture age stimulating the demulsification ability. Over $1.1{\times}10^8spores/ml$ completely demulsified kerosene-0.2% Triton X-100 (2:1) emulsion. Among the low viscosity hydrocarbons, hydrocarbons with longer chain such as n-hexadecane and diesel were more rapidly demulsified. However, only 20-30% of the emulsion with high viscosity hydrocarbons was demulsified after 24 hours. Oil-in-water emulsions made by Corexit, Finalsol and BP series surfactants were completely demulsified within one minute. Demulsification rate ($t_{1/2}$) of oil-in-water emulsions made by Corexit 7664, 8667, Triton X-100 and Tween 80 decreased as their concentration increased. In case of water-in-oil emulsion made by Seagreen, $t_{1/2}$ was over 24 hours. Therefore, demulsification ability of Streptomyces sp. 8321 was more effective on oil-in-water emulsions.

  • PDF

De-emulsification of Petroleum Emulsion Using Nocardia amarae (Nocardia amarae를 이용한 석유 유상액의 탈유화)

  • Lee, Ki-Young;Lee, Jin-Jong;Kim, Dong-Won;Na, Kun;Lee, Jae-Chan
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.209-213
    • /
    • 1998
  • The characteristics of de-emulsification of pertroleum emulsion by Nocardia amarae were investigated. Insoluble medium containing n-hexadecane was more effective than soluble medium in de-emulsification of emulsion containing diesel and bunker C as the organic phase. Emulsion made by the addition of xanthan or bioemulsifier was de-emulsified by N. amarae, and longer culture age was effective. In low viscosity range, organic phase with longer carbon chain was more effective. The contact, angle between bacterial film and water droplet in air increased from 16 degree for 4 day culture age to 26 degree for 15 day. The contact angle between bacterial film and water droplet in kerosene, n-heyxane or n-hexadecane also increased to greater than 100 degree after 3 day culture age. The hydrophobicity of bactgerial film increased according to the culture age.

  • PDF

Fabrication and Filtering Test of Nanoparticle-Stabilized Emulsion to be Suitable for Enhanced Oil Recovery (석유증진회수에 적합한 나노 에멀젼의 제조 및 필터링 시험 분석)

  • Son, Han Am;Lee, Keun Ju;Cho, Jang Woo;Im, Kyung Chul;Kim, Jin Woong;Kim, Hyun Tae
    • Economic and Environmental Geology
    • /
    • v.46 no.1
    • /
    • pp.51-61
    • /
    • 2013
  • Researches on the oil recovery enhancement using the nanotechnology has recently been studied in the United States. The previous researches has focused mainly on the flow characteristics of nanoparticles in porous media, and the stability of the nano-emulsion itself. However, the analysis did not deal with the size effects between a nano-emulsion and the pore size which has an important role when nano-emulsion flows in the porous media. In this research, nano-based emulsion was fabricated which is able to be applied for the enhanced oil recovery techniques and its characteristics was analyzed. In addition, in order to identify the characteristics of nano-emulsions flowing through the porous media, the size effect was analysed by filtering test. According to the results, when the emulsion was fabricated, SCA(Silane Coupling Agent) or PVA(Poly Vinyl Alcohol) are added to improve the stability of emulsion. As the ratio of the decane to water increased, the viscosity of emulsion and the droplet size also increased. For the filtering test at the atmospheric conditions, the droplet did not go through the filter; only the separated water from the emulsion was able to be filtered. This phenomenon occurred because the droplet was not able to overcome the capillary pressure. At the filtering test by suction pressure, most of the emulsion was filtered over the filter size of $60{\mu}m$. However, the ratio of filtration was rapidly degraded at less than $45{\mu}m$ filters. This is caused due to deformation and destruction of the droplet by strong shear stress when passing through the pore. The results from the study on the basic characteristic of nano-emulsion and filtering test will be expected to play as the important role for the fabrication of the stable nano-emulsion or the research on the recovery of residual oil in porous media.

Preparation of the Cobalt Oxide Powder by Hot Petroleum Drying Method (석유증발법에 의한 Cobalt Oxide의 분말제조)

  • 윤상옥;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.257-262
    • /
    • 1987
  • The characteristics of cobalt oxide powders prepared by hot petroleum drying method from the cobalt acetate were evaluated by DTA/TGA, XRD, BET, SEM and density measurement. The cobalt oxide powder could be prepared by hot petroleum drying of the emulsion of cobalt acetate salt solution and the subsequent thermal decomposition of the acetate at 300$^{\circ}C$. As the concentration of the salt solution and the calcination temperature of the dried powder increased, the surface area of the synthesized powder decreased due to the particle growth, so that after sintering the density and grain size decreased. For the same concentration of the salt solution, the surface area and sinterability of the powder by hot petroleum drying increased in comparision with those by conventional drying.

  • PDF

Performance and Emission Studies in a DI Diesel Engine Fuelled with Diesel-Pyrolysis Oil Emulsion (디젤-열분해유 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan;Kim, Hoseung;Kim, Taeyoung;Woo, Sejong;Kang, Kernyong
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.55-63
    • /
    • 2014
  • Pyrolysis oil (PO), also known as Bio crude oil (BCO), has the potential to displace significant amounts of fuels that are currently derived from petroleum sources. PO has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of PO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the PO. One of the easiest way to adopt PO to diesel engine without modifications is emulsification of PO with the fuels that has higher cetane number. However, PO that has high amount of polar chemicals is immiscible with non polar hydrocarbons of diesel. Thus, to stabilize a homogeneous phase of diesel-PO blends, a proper surfactant should be used. In this study, a DI diesel engine operated with diesel and diesel-PO emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by diesel-PO emulsions were examined. Results showed that stable engine operation was possible with the emulsions and engine output power was comparable to diesel operation.

Mathematical model and sensitivity analysis for describing emulsification in ASP flooding

  • Zhang, Chengli;Wang, Peng;Song, Guoliang
    • Geosystem Engineering
    • /
    • v.21 no.6
    • /
    • pp.335-343
    • /
    • 2018
  • Alkali-surfactant polymer flooding has become an important technique to improve oil recovery following the development of oil fields while the function of emulsification in enhanced oil recovery is rarely considered in the existing mathematical model for numerical simulation. In this paper, the mechanism of improving the recovery of the emulsification was analyzed in ASP flooding, and a relatively perfect mathematical model with deep filtration-theory was established, in which oil-water volume equation, saturation equation, viscosity equation, and permeability reduction equation are included. The new model is used to simulate the actual block of an oil field; the simulated results of the new model and an old model without considering the emulsification are compared with the actual well history. It is found that new model which is easy to be realized in numerical simulation has a high precision fitting, and the effect of adding oil and decreasing water is obvious. The sensitivity of emulsification was analyzed, and the results show that the water reducing funnel becomes wider and the rate of water cut decreases rapidly with the increase of emulsifying capacity, and then the rate of recovery slows down. The effect of increasing oil and decreasing water is better, and the degree of recovery increases. The emulsification of the ASP flooding is maintained at a moderate level, which corresponds to ${\Phi}=0.2$ in the new model, and the emulsification is applied to realize the general mathematical quantitative description, so as to better guide the oilfield development.

Feasibility Study of Using Wood Pyrolysis Oil in a Diesel Engine (목질 열분해유의 디젤 엔진 적용성 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Lim, Gi-Hun;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Journal of ILASS-Korea
    • /
    • v.16 no.3
    • /
    • pp.152-158
    • /
    • 2011
  • Fast pyrolysis of biomass is one of the most promising technologies for converting biomass to liquid fuels. The pyrolysis oil, also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is the use of BCO/diesel emulsions. In this study, a diesel engine operated with diesel, bio diesel (BD), and BCO/diesel emulsion was experimentally investigated. Performance and emission characteristics of a diesel engine fuelled by BCO/diesel emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion especially in the injection system.

Production of Single-Cell Protein on Petroleum Hydrocarbon -V. Recovery and Purification of the Yeast Cell and Its Preliminary Animal Feeding Test- (석유탄화수소를 이용한 단세포단백질의 생산에 관한 연구 -V. 균체의 회수, 정제 및 예비 동물사육 시험-)

  • Pyun, Yoo-Ryang;Kwon, Tai-Wan;Chee, Kew-Mahn;Kim, Chun-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.252-258
    • /
    • 1972
  • Methods of separating yeast cells from oil-water-cell emulsion and subsequent purification of the recovered yeast have been studied. In addition, the results of preliminary feeding experiments in which a yeast grown on gas oil was incorporated into chick rations are reported. According to the present study, it appears that the recovery of the yeasts would be easier at pH 9, since the emulsion is relatively more unstable. A class of surface active agent at a concentration of 0.3% was found to facilitate the separation of the yeast from the emulsion. The use of electrolytes such as NaCl and KCl were found to be most effective in breaking the emulsion. Solvent treatment using iso-propyl alcohol and its azeotropic mixture with hexane at $58^{\circ}C$ are particularly suitable for purification of the yeast. In the feeding experiment it was found that 5 percent of the fishmeal in the control ration could be replaced by the yeast with no adverse effect on performance. However, when 8 percent of the fish meal in the control ration was replaced by the yeast, some effect on live-weight gain of the chicks was observed.

  • PDF