• Title/Summary/Keyword: Petch's relation

Search Result 3, Processing Time 0.017 seconds

Mechanical Behavior of Nanocrystalline Aluminum (II) : Modeling (나노결정 알루미늄의 기계적 거동 (II) : 모델링)

  • Khan Akhtar S.;Suh Yeong Sung
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.136-138
    • /
    • 2005
  • The responses of nanocrystalline aluminum powder of different grain sizes, was modeled Using, Khan, Huang, and Liang (KHL) viscoplastic model including hi-linear Hall-Petch type, based on experimental measurements. Correlation of strain-rate-dependent stress responses for different grain sizes were in good agreement with the experimental results.

  • PDF

A Study on the Mechanical Properties of Ag-X(X=Cu,Ni,C) Alloys Prepared by the Vacuum-deposition Technique (진공증착법으로 제작한 Ag-X(X=Cu,Ni,C) 합금의 기계적 성질에 관한 연구)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.243-250
    • /
    • 2011
  • When alloys are vacuum-deposited on cooled substrates, super-rapidly cooled alloy films in the unequilibrium state can be obtained. As an application of this method, Ag-Cu, Ag-Ni and Ag-C alloys were successfully produced, and their mechanical properties with tempering temperature were investigated. The following results were obtained : (1) In case of Ag-Cu alloys, the solid solution was hardened by tempering at $150^{\circ}C$. The hardening is considered to occur when the solid solution begins to decompose into ${\alpha}$ and ${\beta}$ phases. The Knoop hardness number of a 40 at.%Ag-Cu alloy film deposited on a cooled glass substrate was 390 $kg/mm^2$. The as-deposited films were generally very hard but fractured under stresses below their elastic limits. (2) In case of Ag-Ni and Ag-C alloys, after the tempering of 4 at.%Ni-Ag alloy at $400^{\circ}C$ and of 1 and 2 at.%C-Ag alloys at $200^{\circ}C$, they were hardened by the precipitation of fine nickel and carbon particles. The linear relationship between proof stress vs. $(grain\;diameter)^{-l/2}$ for bulk silver polycrystals can be applied to vacuum-deposited films up to about 0.1 ${\mu}m$ grain diameter, but the proof stress of ultra-fine grained silver with grain diameters of less than 0.1 ${\mu}m$ was smaller than the value expected from the Petch's relation.

Effect of {10ī2} Twinning Characteristics on the Deformation Behavior of Rolled AZ31 Mg Alloy ({10ī2} 쌍정 특성이 AZ31 마그네슘 합금 압연재의 변형거동에 미치는 영향)

  • Park, S.H.;Hong, S.G.;Lee, J.H.;Lee, C.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.416-422
    • /
    • 2010
  • The $\{10\bar{1}2\}$ twinning characteristics, such as active twin variants, volume fraction of twins with strain, twin morphology, twin texture and angle relationship between twins, were dependent on the activation mode (i.e., tension parallel to the caxis or compression perpendicular to the c-axis). The selection criterion of active twin variants was governed by the Schmid law. This activation of selected twin variants depending on the activation mode consequently caused a totally different plastic deformation behavior in two activation modes. The differences in the deformation characteristics, such as flow stress and work hardening rate, between both activation modes were explained in relation with activation stresses for slips and twinning, relative activities of twinning and slips during plastic deformation, grain refining effect by twin boundaries (Hall-Petch effect), and twinning-induced change in activities of slips.