• Title/Summary/Keyword: Petal Nozzle

Search Result 9, Processing Time 0.022 seconds

A Study of the Supersonic Free Jet Discharging from a Petal Nozzle (Petal 노즐로부터 방출되는 초음속 자유제트 유동에 관한 연구)

  • Lee Jun-Hee;Kim Jung-Bae;Kim Heuy-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.109-112
    • /
    • 2002
  • The supersonic jet discharging from a petal nozzle is known to enhance mixing effect with the surrounding gas because it produces strong longitudinal vortices due to the velocity difference from both the major and minor axes of petal nozzle. In the present study, the supersonic free jet discharging from the petal nozzle is investigated experimentally. The nozzles used are 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7, and the flow fields are compared with a circular nozzle with the same design Mach number. The pitot impact pressures are measured using a fine pilot probe. The flow fields are visualized using a Schlieren optical method. The results show that the petal nozzle has more increased supersonic length compared with the circular jet.

  • PDF

Experimental Study of the Supersonic Free Jet Discharging from a Petal Nozzle (페탈노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • Lee, Jun-Hee;Kim, Jung-Bae;Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2133-2138
    • /
    • 2003
  • In general, flow entrainment of surrounding gas into a supersonic jet is caused by the pressure drop inside the jet and the shear actions between the jet and the surrounding gas. In the recent industrial applications, like supersonic ejector system or scramjet engine, the rapid mixing of two different gases is important in that it determines the whole performance of the flow system. However, the mixing performance of the conventional circular jet is very low because the shear actions are not enough. The supersonic jet discharging from a petal nozzle is known to enhance mixing effects with the surrounding gas because it produces strong longitudinal vortices due to the velocity differences from both the major and minor axes of petal nozzle. This study aims to enhance the mixing performance of the jet with surrounding gas by using the lobed petal nozzle. The jet flows from the petal nozzle are compared with those from the conventional circular nozzle. The petal nozzles employed are 4, 6, and 8 lobed shapes with a design Mach number of 1.7 each, and the circular nozzle has the same design Mach number. The pitot impact pressures are measured in detail to specify the jet flows. For flow visualization, the schlieren optical method is used. The experimental results reveal that the petal nozzle reduces the supersonic length of the supersonic jet, and leads to the improved mixing performance compared with the conventional circular jet.

  • PDF

An Experimental Study on the Supersonic Petal Ejector System (초음속 페탈 이젝터 시스템에 관한 실험적 연구)

  • Lee, Jun-Hee;Kim, Jung-Bae;Choi, Bo-Gyu;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2145-2150
    • /
    • 2003
  • Ejector system is one of fluid machinery which can entrain the fluid in low pressure part and transport it to the higher pressure part. The ejector system has been widely used for the purpose of obtaining high-vacuum state, fluid transport, thrust augmentation, etc. It can transport a large capacity of fluid with relatively small device of no any moving parts, and thus seldom causes mechanical troubles. However, the conventional ejector system has been pointed out that its overall efficiency is quite low compared with other fluid machinery since it is derived by only the pure shear stresses. In the present study, 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7 are adopted as a primary nozzle to improve the ejector performance, and are compared with a conventional circular nozzle. The static pressures along the diffuser wall are measured to qualify the flow field inside the supersonic petal ejector system.

  • PDF

An Experimental Study on the Supersonic Petal Ejector-Diffuser System (초음속 페탈이젝터-디퓨저 시스템에 관한 실험적 연구)

  • 이준희;김중배;최보규;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.19-22
    • /
    • 2003
  • Ejector-diffuser system is one of fluid machinery which can entrain the fluid in low pressure part and transport it to the higher pressure part. The conventional ejector-diffuser system has been pointed out that its overall efficiency is quite low compared with other fluid machinery since it is derived by only the pure shear stresses. In the present study, 4, 6, and 8 lobed petal nozzles with a design Mach number of 1.7 are adopted as a primary nozzle to improve the performance, and are compared with a conventional circular nozzle.

  • PDF

Numerical Study on Non-premixed Methane Flames in Twin-jet Counterflow (Twin-jet 대향류에서 메탄 비예혼합화염에 대한 수치적 연구)

  • Chun, K.W.;Kim, J.H.;Chung, C.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.49-56
    • /
    • 2004
  • A two-dimensional twin-jet counterflow system has been designed, in which two streams from two double-slit nozzles form a counterflow. This flow system enables one to systematically investigate various effects on non-premixed flames, including the non-premixed flame interaction, the edge flame behavior and the effect of curvature. Non-premixed flame interaction in the twin-jet counterflow system has been investigated numerically for methane fuel diluted with nitrogen. Three types of non-premixed flame(conventional counterflow flame, crossed twin-jet flame and petal shaped flame) were simulated depending on the combination of fuel/oxidizer supply to each nozzle. The extinction characteristics of non premixed methane flame in the twin-jet counterflow have been investigated numerically. The boundary of the existence of petal-shaped flames was identified for the twin-jet counterflow flames. Due to the existence of the unique petal-shaped flames, the extinction boundary for the twin-jet counterflow can be extended significantly compared to that for the conventional counterflow non-premixed flames, through the interaction of two flames. Through the comparison of the crossed twin-jet flame and the conventional counterflow flame, structure of the crossed twin-jet counterflow flame is analysed. Through the comparison of the petal shaped flame and the conventional counterflow flame, the extension of the extinction boundary for the twin-jet counterflow is investigated.

  • PDF

An Experimental Study on the Supersonic Free Jet Discharged from a Petal Nozzle (Petal 노즐로부터 방출되는 초음속 자유제트에 관한 실험적 연구)

  • 이준희;권용훈;정미선;이장창;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.55-56
    • /
    • 2002
  • 노즐로부터 방출되는 초음속 제트유동의 특성은 노즐의 공급압력과 배압의 비에 따라 결정된다 노즐 배압에 상대적인 노즐 출구면에서 발생하는 압력의 크기에 따라 제트 유동은 과팽창, 적정팽창, 그리고 부족팽창의 형태로 된다. 종래 주로 단면이 원형인 초음속 노즐로부터 방출되는 자유제트에 관하여 많은 연구가 수행되어, 제트 유동의 특성이 비교적 잘 알려져 있다. 이들 연구 결과에 의하면, 제트 내부에서 발생하는 충격파 시스템은 노즐 출구면에서 유동의 팽창상태에 의존하게 되며, 제트 유동은 주위의 기체를 흔입(entrainment)하여, 유동의 하류방향으로 제트 폭이 확대되며, 유속은 감소하게 된다.

  • PDF

The Secondary Chamber Pressure Characteristics of Sonic/Supersonic Ejector-Diffuser System (음속/초음속 이젝터 시스템의 2차정체실 압력특성)

  • Jung, S.J.;Lee, J.H.;Lee, K.H.;Choi, B.G.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.646-651
    • /
    • 2001
  • The present study is an experimental work of the sonic/supersonic air ejector-diffuser system. The pressure-time dependence in the secondary chamber of this ejector system is measured to investigate the steady operation of the ejector system. Six different primary nozzles of two sonic nozzles, two supersonic nozzles, petal nozzle, and lobed nozzle are employed to drive the ejector system at the conditions of different operating pressure ratios. Static pressures on the ejector-diffuser walls are to analyze the complicated flows occurring inside the system. The volume of the secondary chamber is changed to investigate the effect on the steady operation. the results obtained show that the volume of the secondary chamber does not affect the steady operation of the ejector-diffuser system but the time-dependent pressure in the secondary chamber is a strong function of the volume of the secondary chamber.

  • PDF

The Secondary Chamber Pressure Characteristics of Sonic/Supersonic Ejector-Diffuser System (음속/초음속 이젝터 시스템의 2차정체실 압력특성)

  • 이준희;최보규;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.50-56
    • /
    • 2001
  • The present study is an experimental work of the soni $c^ersonic air ejector-diffuser system. The pressure-time dependence in the secondary chamber of this ejector system is measured to investigate the steady operation of the ejector system. Six different primary nozzles of two sonic nozzles, two supersonic nozzles, petal nozzle, and lobed nozzle are employed to drive the ejector system at the conditions of different operating pressure ratios. Static pressures on the ejector-diffuser walls are to analyze the complicated flows occurring inside the system. The volume of the secondary chamber is changed to investigate the effect on the steady operation. the results obtained show that the volume of the secondary chamber does not affect the steady operation of the ejector-diffuser system but the time-dependent pressure in the secondary chamber is a strong function of the volume of the secondary chamber.er.

  • PDF

Effect of Cutting Conditions on Burr Formation in Micro-drilling of A6061 (A6060의 미소 드릴링시 절삭조건이 Burr 형성에 미치는 영향)

  • Park, Dong-Sam;Choi, Jong-Soon;Kwon, Sang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.47-52
    • /
    • 1999
  • Theoretical and experimental studies on burr formation and deburring in many manufacturing processes have been actively pursued. Though micro-drilling has become more important in the production of precision parts such as PCB, air bearing, camera and nozzle, most studies on drilling burr formation have focused on the conventional drilling process. This paper describes burr formation process and the effect of cutting conditions such as spindle speed, feedrate and drilling depth per one step on burr formation in drilling A6061 with drills of diameter 1.0mm and 0.6mm. Experimental results showed that burr with cap were formed at relatively low feedrates, while petal burrs with several large burr fragments were formed at high feedrates. Burr height appeared to increase at the hight feedrates and lower spindle speeds. The effect of final cutting depth on burr height was negligible.

  • PDF