• Title/Summary/Keyword: Personalized Service

Search Result 658, Processing Time 0.037 seconds

Design and Implementation of Mobile Platform for Personalized Media Streaming Service (사용자 맞춤형 미디어 스트리밍 서비스를 위한 모바일 플랫폼 설계 및 구현)

  • Park, Sung-Joo;Yang, Chang-Mo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.360-363
    • /
    • 2010
  • Streaming Technology can support the real-time playback without downloading and storing multimedia data in local HDD. So, client browser or plug-in can represent multimedia data before the end of file transmission using streaming technology. Recently, the demand for efficient real-time playback and transmission of large amounts of multimedia data is growing rapidly. But most users' connections over network are not fast and stable enough to download large chunks of multimedia data. In this paper, we propose an intelligent IP streaming system based on personalized media service. The proposed IP streaming system enables users to get an intelligent recommendation of multimedia contents based on the user preference information stored on the streaming server or the home media server. The supposed intelligent IP streaming system consists of Server Metadata Agent, Pumping Server, Contents Storage Server, Client Metadata Agent and Streaming Player. And in order to implement the personalized media service, the user information, user preference information and client device information are managed under database concept. Moreover, users are assured of seamless access of streamed content event if they switch to another client device by implementing streaming system based on user identification and device information. We evaluate our approach with manufacturing home server system and simulation results.

  • PDF

Intelligent Healthcare Service Provisioning Using Ontology with Low-Level Sensory Data

  • Khattak, Asad Masood;Pervez, Zeeshan;Lee, Sung-Young;Lee, Young-Koo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2016-2034
    • /
    • 2011
  • Ubiquitous Healthcare (u-Healthcare) is the intelligent delivery of healthcare services to users anytime and anywhere. To provide robust healthcare services, recognition of patient daily life activities is required. Context information in combination with user real-time daily life activities can help in the provision of more personalized services, service suggestions, and changes in system behavior based on user profile for better healthcare services. In this paper, we focus on the intelligent manipulation of activities using the Context-aware Activity Manipulation Engine (CAME) core of the Human Activity Recognition Engine (HARE). The activities are recognized using video-based, wearable sensor-based, and location-based activity recognition engines. An ontology-based activity fusion with subject profile information for personalized system response is achieved. CAME receives real-time low level activities and infers higher level activities, situation analysis, personalized service suggestions, and makes appropriate decisions. A two-phase filtering technique is applied for intelligent processing of information (represented in ontology) and making appropriate decisions based on rules (incorporating expert knowledge). The experimental results for intelligent processing of activity information showed relatively better accuracy. Moreover, CAME is extended with activity filters and T-Box inference that resulted in better accuracy and response time in comparison to initial results of CAME.

Personalized Storytelling Mathematics Learning System (개인화 스토리텔링 수학 학습 시스템)

  • Lee, Jeonghwan;Han, Keejun;Gweon, Gahgene
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.981-984
    • /
    • 2014
  • 개인화된 서술형 수학 문제(mathematics word problem)는 오랫동안 연구된 분야로 학생들의 학업 성취도와 수학에 대한 태도에 관심을 가져왔다. 본 연구에서는 2013년 도입된 스토리텔링 수학에 개인화된 콘텐츠를 접목하여 그 효과를 알아보고자 하였다. 초등학생 26명을 대상으로 하여 약 110분 동안 수업을 진행하였으며, 무게에 대한 새로운 개념을 배우는 데 그 목적을 두었다. 각각 13명씩 개인화 그룹과 비 개인화 그룹으로 나누어 수업을 진행하였다. 학업 성취도(Learning Achievement)에서는 사전 시험(pre-test) 점수가 너무 높아 두 그룹 간에 서로간의 유의한 차이점을 발견하지 못했다. 수학에 대한 태도 부분과 몰입도(Flow) 부분에서는 다소 개인화 그룹의 값이 높았지만, 통계적으로 유의한 정도는 차이는 아니었다. 하지만 정성적 분석에서는 차이가 있었다. 개인화 그룹(Personalized group)은 비 개인화 그룹(non-personalized group)에 비해 개인화(personalization)가 수업의 재미있는 요소로서 보다 중요한 작용을 했다고 느꼈다. 또한, 테스트나 측정(measure) 부분에서 생겼던 문제점을 개선하여 재 실험이 있을 시엔 유의미한 값을 나타낼 것으로 기대된다.

Design and Implementation of a Personalized e-Mall with Association Rules based on View History of Excellent Customers (우수고객의 이력 뷰를 이용한 연관규칙 개별화 전자상점 설계 및 구현)

  • Jeong Kyeong-Ja;Han Jeong-Hye
    • Journal of Digital Contents Society
    • /
    • v.2 no.2
    • /
    • pp.117-127
    • /
    • 2001
  • Since the number of e-malls is increased by the rapidly Progress of internet, most e-malls are trying to increase customers' interests by providing personalized services. To Provide this service for CRM, the e-mall must use the personalized rules calculated from customer transaction database. The more filtered transaction data are, the more the e-mall services efficiently and exactly to customer's need. The filtered transaction database is necessary to obtain the food personalized rules. In this paper we propose and develope a personalized e-mall with association rules based on view history of excellent customers who have good transaction data. Association rules based on view history of excellent customers reduce the access time and computing costs. The e-mall with them can provide personalized services more efficiently and exactly.

  • PDF

A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem (온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구)

  • Qinglong Li;Shibo Cui;Byunggyu Shin;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.51-75
    • /
    • 2021
  • Global e-commerce websites offer personalized recommendation services to gain sustainable competitiveness. Existing studies have offered personalized recommendation services using quantitative preferences such as ratings. However, offering personalized recommendation services using only quantitative data has raised the problem of decreasing recommendation performance. For example, a user gave a five-star rating but wrote a review that the user was unsatisfied with hotel service and cleanliness. In such cases, has problems where quantitative and qualitative preferences are inconsistent. Recently, a growing number of studies have considered review data simultaneously to improve the limitations of existing personalized recommendation service studies. Therefore, in this study, we identify review and rating mismatches and build a new user profile to offer personalized recommendation services. To this end, we use deep learning algorithms such as CNN, LSTM, CNN + LSTM, which have been widely used in sentiment analysis studies. And extract sentiment features from reviews and compare with quantitative preferences. To evaluate the performance of the proposed methodology in this study, we collect user preference information using real-world hotel data from the world's largest travel platform TripAdvisor. Experiments show that the proposed methodology in this study outperforms the existing other methodologies, using only existing quantitative preferences.

Information Privacy Concern in Context-Aware Personalized Services: Results of a Delphi Study

  • Lee, Yon-Nim;Kwon, Oh-Byung
    • Asia pacific journal of information systems
    • /
    • v.20 no.2
    • /
    • pp.63-86
    • /
    • 2010
  • Personalized services directly and indirectly acquire personal data, in part, to provide customers with higher-value services that are specifically context-relevant (such as place and time). Information technologies continue to mature and develop, providing greatly improved performance. Sensory networks and intelligent software can now obtain context data, and that is the cornerstone for providing personalized, context-specific services. Yet, the danger of overflowing personal information is increasing because the data retrieved by the sensors usually contains privacy information. Various technical characteristics of context-aware applications have more troubling implications for information privacy. In parallel with increasing use of context for service personalization, information privacy concerns have also increased such as an unrestricted availability of context information. Those privacy concerns are consistently regarded as a critical issue facing context-aware personalized service success. The entire field of information privacy is growing as an important area of research, with many new definitions and terminologies, because of a need for a better understanding of information privacy concepts. Especially, it requires that the factors of information privacy should be revised according to the characteristics of new technologies. However, previous information privacy factors of context-aware applications have at least two shortcomings. First, there has been little overview of the technology characteristics of context-aware computing. Existing studies have only focused on a small subset of the technical characteristics of context-aware computing. Therefore, there has not been a mutually exclusive set of factors that uniquely and completely describe information privacy on context-aware applications. Second, user survey has been widely used to identify factors of information privacy in most studies despite the limitation of users' knowledge and experiences about context-aware computing technology. To date, since context-aware services have not been widely deployed on a commercial scale yet, only very few people have prior experiences with context-aware personalized services. It is difficult to build users' knowledge about context-aware technology even by increasing their understanding in various ways: scenarios, pictures, flash animation, etc. Nevertheless, conducting a survey, assuming that the participants have sufficient experience or understanding about the technologies shown in the survey, may not be absolutely valid. Moreover, some surveys are based solely on simplifying and hence unrealistic assumptions (e.g., they only consider location information as a context data). A better understanding of information privacy concern in context-aware personalized services is highly needed. Hence, the purpose of this paper is to identify a generic set of factors for elemental information privacy concern in context-aware personalized services and to develop a rank-order list of information privacy concern factors. We consider overall technology characteristics to establish a mutually exclusive set of factors. A Delphi survey, a rigorous data collection method, was deployed to obtain a reliable opinion from the experts and to produce a rank-order list. It, therefore, lends itself well to obtaining a set of universal factors of information privacy concern and its priority. An international panel of researchers and practitioners who have the expertise in privacy and context-aware system fields were involved in our research. Delphi rounds formatting will faithfully follow the procedure for the Delphi study proposed by Okoli and Pawlowski. This will involve three general rounds: (1) brainstorming for important factors; (2) narrowing down the original list to the most important ones; and (3) ranking the list of important factors. For this round only, experts were treated as individuals, not panels. Adapted from Okoli and Pawlowski, we outlined the process of administrating the study. We performed three rounds. In the first and second rounds of the Delphi questionnaire, we gathered a set of exclusive factors for information privacy concern in context-aware personalized services. The respondents were asked to provide at least five main factors for the most appropriate understanding of the information privacy concern in the first round. To do so, some of the main factors found in the literature were presented to the participants. The second round of the questionnaire discussed the main factor provided in the first round, fleshed out with relevant sub-factors. Respondents were then requested to evaluate each sub factor's suitability against the corresponding main factors to determine the final sub-factors from the candidate factors. The sub-factors were found from the literature survey. Final factors selected by over 50% of experts. In the third round, a list of factors with corresponding questions was provided, and the respondents were requested to assess the importance of each main factor and its corresponding sub factors. Finally, we calculated the mean rank of each item to make a final result. While analyzing the data, we focused on group consensus rather than individual insistence. To do so, a concordance analysis, which measures the consistency of the experts' responses over successive rounds of the Delphi, was adopted during the survey process. As a result, experts reported that context data collection and high identifiable level of identical data are the most important factor in the main factors and sub factors, respectively. Additional important sub-factors included diverse types of context data collected, tracking and recording functionalities, and embedded and disappeared sensor devices. The average score of each factor is very useful for future context-aware personalized service development in the view of the information privacy. The final factors have the following differences comparing to those proposed in other studies. First, the concern factors differ from existing studies, which are based on privacy issues that may occur during the lifecycle of acquired user information. However, our study helped to clarify these sometimes vague issues by determining which privacy concern issues are viable based on specific technical characteristics in context-aware personalized services. Since a context-aware service differs in its technical characteristics compared to other services, we selected specific characteristics that had a higher potential to increase user's privacy concerns. Secondly, this study considered privacy issues in terms of service delivery and display that were almost overlooked in existing studies by introducing IPOS as the factor division. Lastly, in each factor, it correlated the level of importance with professionals' opinions as to what extent users have privacy concerns. The reason that it did not select the traditional method questionnaire at that time is that context-aware personalized service considered the absolute lack in understanding and experience of users with new technology. For understanding users' privacy concerns, professionals in the Delphi questionnaire process selected context data collection, tracking and recording, and sensory network as the most important factors among technological characteristics of context-aware personalized services. In the creation of a context-aware personalized services, this study demonstrates the importance and relevance of determining an optimal methodology, and which technologies and in what sequence are needed, to acquire what types of users' context information. Most studies focus on which services and systems should be provided and developed by utilizing context information on the supposition, along with the development of context-aware technology. However, the results in this study show that, in terms of users' privacy, it is necessary to pay greater attention to the activities that acquire context information. To inspect the results in the evaluation of sub factor, additional studies would be necessary for approaches on reducing users' privacy concerns toward technological characteristics such as highly identifiable level of identical data, diverse types of context data collected, tracking and recording functionality, embedded and disappearing sensor devices. The factor ranked the next highest level of importance after input is a context-aware service delivery that is related to output. The results show that delivery and display showing services to users in a context-aware personalized services toward the anywhere-anytime-any device concept have been regarded as even more important than in previous computing environment. Considering the concern factors to develop context aware personalized services will help to increase service success rate and hopefully user acceptance for those services. Our future work will be to adopt these factors for qualifying context aware service development projects such as u-city development projects in terms of service quality and hence user acceptance.

Knowledge Transfer Using User-Generated Data within Real-Time Cloud Services

  • Zhang, Jing;Pan, Jianhan;Cai, Zhicheng;Li, Min;Cui, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.77-92
    • /
    • 2020
  • When automatic speech recognition (ASR) is provided as a cloud service, it is easy to collect voice and application domain data from users. Harnessing these data will facilitate the provision of more personalized services. In this paper, we demonstrate our transfer learning-based knowledge service that built with the user-generated data collected through our novel system that deliveries personalized ASR service. First, we discuss the motivation, challenges, and prospects of building up such a knowledge-based service-oriented system. Second, we present a Quadruple Transfer Learning (QTL) method that can learn a classification model from a source domain and transfer it to a target domain. Third, we provide an overview architecture of our novel system that collects voice data from mobile users, labels the data via crowdsourcing, utilises these collected user-generated data to train different machine learning models, and delivers the personalised real-time cloud services. Finally, we use the E-Book data collected from our system to train classification models and apply them in the smart TV domain, and the experimental results show that our QTL method is effective in two classification tasks, which confirms that the knowledge transfer provides a value-added service for the upper-layer mobile applications in different domains.

Effect of Sympathy Module and Trust on Medical Service Quality, Medical Trust and Happiness (공감모듈과 신뢰가 의료서비스 품질 및 의료 신뢰, 행복에 미치는 영향)

  • Cho, Chung Sik;Kim, Jae Ik;Nam, Seung Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.90-100
    • /
    • 2015
  • There are a lot of effort to improve medical service quality and medical trust in Korean Medicine. However, in spite of importance of personalized medicine, there are still few research about it. Thus, the purpose of this study is to grope ways to improve medical service quality and medical trust by sympathy module group and personalized trust. People over 19 were participated in investigation. We divided respondents into 4 groups depending on sympathy module group and 2 groups depending on speed of trust. Questionnaire was consisted of questions about sympathy module group, speed of trust, medical service quality, medical trust, satisfaction and happiness. This questionnaires were conducted through personal interviews. Total 220 members responded to the survey and the results of the analysis were as follows. Rational type had the highest proportion. At Medical service quality scale, Prevention focus group had most highest figure on Confidence. Promotion focus group and Rational Group had most highest figure on Sympathy. At Medical trust scale, Medical team had the highest proportion at all group. Prevention focus group put more emphasis on sense of sanitation, At Satisfaction and Happiness scale, Satisfaction and Happiness was most affected by Trust in Sincerity and Ability. This study can be very useful for composing kit of treatment of personalized medicine. But this study has also some limits such as respondent selection, disease selection etc. So, more detailed and comprehensive survey is needed.

Optimizing User Experience While Interacting with IR Systems in Big Data Environments

  • Minsoo Park
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.104-110
    • /
    • 2023
  • In the user-centered design paradigm, information systems are created entirely tailored to the users who will use them. When the functions of a complex system meet a simple user interface, users can use the system conveniently. While web personalization services are emerging as a major trend in portal services, portal companies are competing for a second service, such as introducing 'integrated communication platforms'. Until now, the role of the portal has been content and search, but this time, the goal is to create and provide the personalized services that users want through a single platform. Personalization service is a login-based cloud computing service. It has the characteristic of being able to enjoy the same experience at any time in any space with internet access. Personalized web services like this have the advantage of attracting highly loyal users, making them a new service trend that portal companies are paying attention to. Researchers spend a lot of time collecting research-related information by accessing multiple information sources. There is a need to automatically build interest information profiles for each researcher based on personal presentation materials (papers, research projects, patents). There is a need to provide an advanced customized information service that regularly provides the latest information matched with various information sources. Continuous modification and supplementation of each researcher's information profile of interest is the most important factor in increasing suitability when searching for information. As researchers' interest in unstructured information such as technology markets and research trends is gradually increasing from standardized academic information such as patents, it is necessary to expand information sources such as cutting-edge technology markets and research trends. Through this, it is possible to shorten the time required to search and obtain the latest information for research purposes. The interest information profile for each researcher that has already been established can be used in the future to determine the degree of relationship between researchers and to build a database. If this customized information service continues to be provided, it will be useful for research activities.

Personalized Service Based on Context Awareness through User Emotional Perception in Mobile Environment (모바일 환경에서의 상황인식 기반 사용자 감성인지를 통한 개인화 서비스)

  • Kwon, Il-Kyoung;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.287-292
    • /
    • 2012
  • In this paper, user personalized services through the emotion perception required to support location-based sensing data preprocessing techniques and emotion data preprocessing techniques is studied for user's emotion data building and preprocessing in V-A emotion model. For this purpose the granular context tree and string matching based emotion pattern matching techniques are used. In addition, context-aware and personalized recommendation services technique using probabilistic reasoning is studied for personalized services based on context awareness.