• 제목/요약/키워드: Personalized Service

검색결과 658건 처리시간 0.028초

메타버스에서 나타나는 주거의 의미, 유형 및 특성 연구 (A Study on Meaning, Typology, and Characteristics of a Home in the Metaverse)

  • 이지헌;차승현
    • 토지주택연구
    • /
    • 제13권4호
    • /
    • pp.91-103
    • /
    • 2022
  • 주거는 현실세계에서 중요한 의미를 가진다. 그에 비해 메타버스의 주거는 다양한 메타버스 서비스 플랫폼들에서 만들어지고 있으나 아직까지 다른 건축 유형들에 비해 관심이 부족하다. 본 연구는 주거의 의미, 유형과 특성에 기초하여 현실세계의 주거 모델을 바탕으로 메타버스 주거의 개념을 확립하고 발전 방향을 모색하고자 한다. 이를 위해 선행연구 조사, 기존 주거 모델 분석, 메타버스 주거 사례 연구 및 설문조사를 실시하였다. 또한 분석된 내용을 토대로 물리적, 사회적, 개인적 모델을 포함하는 메타버스 주거 모델을 제시하였고, 물리적 모델의 공간 꾸미기 및 피난처 특징과 개인적 모델의 자기표현 특징을 메타버스 주거를 가장 잘 나타낼 수 있는 특징으로 파악하였다. 본 연구의 결과가 향후 메타버스 가상세계 연구 및 서비스 플랫폼 개발에 도움이 될 수 있을 것이라 기대한다.

다중속성 LSTM 모델 기반 TV 시청 패턴 분석 시스템 (TV Watching Pattern Analysis System based on Multi-Attribute LSTM Model)

  • 이종원;성미경;정회경
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.537-542
    • /
    • 2021
  • 스마트 TV는 인터넷을 기반으로 기존의 TV에 비해 다양한 서비스와 정보를 제공하고 있다. 보다 개인화된 서비스나 정보를 제공하기 위해서는 사용자의 시청 패턴을 분석하고 이를 기반으로 맞춤형 서비스나 정보를 제공해야한다. 제안하는 시스템은 사용자의 TV 시청 패턴을 입력받고 이를 분석하여 사용자에게 맞춤형 정보로써 TV 프로그램이나 영화를 추천한다. 이를 위해 전처리기와 딥러닝(deep learning) 모델로 시스템을 구성하였다. 전처리기는 사용자가 시청한 TV 프로그램의 이름과 해당 TV 프로그램을 시청한 날짜, 시청한 시간 등을 입력하면 이를 정제한다. 그리고 정제된 데이터를 다중속성 LSTM 모델이 학습하고 예측을 수행하게 된다. 제안하는 시스템은 사용자에게 맞춤형 정보를 제공하는 시스템으로써 기존의 IoT 기술과 딥러닝 기술을 융합한 디지털 컨버전스(convergence)의 선도 기술이 될 것으로 사료된다.

지역관광 빅데이터 정책성과와 과제 -제주특별자치도를 사례로- (Policy Achievements and Tasks for Using Big-Data in Regional Tourism -The Case of Jeju Special Self-Governing Province-)

  • 고선영;정근오
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.579-586
    • /
    • 2021
  • 본 연구는 다양한 빅데이터를 지역관광 정책에 활용한 제주특별자치도의 사례를 토대로, 관광빅데이터의 활용성과와 과제를 제시하였다. 가장 큰 활용성과는 관광빅데이터를 통해 급변하는 관광트랜드와 관광업계의 동향을 시의성있고 구체적으로 파악할 수 있게 되었고, 기존 관광통계를 정교화하는데 활용할 수 있었다는 점이다. 여기서 더 나아가 제주는 빅데이터의 활용 범위를 관광 현상 이해의 수준을 넘어 실시간 맞춤형 서비스 플랫폼 구축까지 영역을 확장하였다. 이것이 가능했던 이유는 데이터 수집 및 분석 환경 구축과 산·관·학의 협력적 거버넌스가 조성되었기 때문이다. 향후 해결해야 할 과제는 첫째, 민간 데이터셋 위주의 분석으로 예산 의존적이라는 한계와 둘째, 스마트관광의 궁극적 목표인 개인맞춤형서비스 구축을 위한 개인수준 데이터 수집 인프라, 개인정보보호법 등의 제도적인 문제의 해결이다. 마지막으로, 데이터 분석과 데이터 연계에 도달하기까지의 전문성과 기술적 한계들이 남아 있다.

Travel Route Recommendation Utilizing Social Big Data

  • Yu, Yang Woo;Kim, Seong Hyuck;Kim, Hyeon Gyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.117-125
    • /
    • 2022
  • 최근 여행에 대한 관심이 높아지면서, 번거로운 여행 일정을 대신 수립해주는 여행 일정 추천 서비스에 대한 연구가 활발히 진행되고 있다. 여행 일정 추천에 있어 가장 중요하면서도 공통적으로 제시되는 목표는 여행 목적지 근처의 인기 관광지를 포함한 최단 거리 여행 경로를 제공하는 것이다. 다수의 기존 연구에서는 개인 맞춤형 스케줄 제공에 초점을 맞추었으며, 사용자의 여행 이동 경로 이력이나 SNS 리뷰가 존재하지 않을 경우 설문 조사가 필요한 문제점이 있었다. 또한 최단 거리를 계산할 때 발생할 수 있는 현실적인 문제점도 명확히 지적되지 않았다. 이와 관련하여, 본 논문에서는 소셜 빅데이터를 활용하여 인기 관광지를 알아내기 위한 정량화된 방법을 소개하고, 최단 거리 알고리즘 적용시 발생할 수 있는 문제점과 이를 해결하기 위한 휴리스틱 알고리즘을 함께 제시한다. 제안 방법을 검증하기 위해, 경상남도를 대상으로 63,000여 개의 플레이스 정보를 수집하고 빅데이터 분석을 수행했으며, 실험을 통해 제안한 휴리스틱 스케줄링 알고리즘이 실제 데이터 상에서 실시간 처리가 가능함을 확인하였다.

패턴인식에 기반한 컴퓨팅사고력 계발을 위한 유치원 AI교재 설계 (Design of Artificial Intelligence Textbooks for Kindergarten to Develop Computational Thinking based on Pattern Recognition.)

  • 김소희;정영식
    • 정보교육학회논문지
    • /
    • 제25권6호
    • /
    • pp.927-934
    • /
    • 2021
  • 인공지능은 우리의 삶에 점차 많은 부분을 차지하고 있으며, 발전하는 속도도 빨라지고 있다. 학생들의 컴퓨팅 사고력을 인공지능이 학습하는 방법대로 길러주는 것을 ACT(AI based Computational Thinking)라고 한다. ACT 중 패턴 인식은 문제를 효율적으로 해결하기 위해 필수적인 요소이다. 패턴 분석은 패턴 인식 과정의 일부로 볼 수 있다. 실제로 넷플릭스의 개인 맞춤 영화 추천, 반복된 증상을 분석하여 코로나 바이러스로 명명하는 것 등이 모두 패턴 분석의 결과이다. 패턴인식을 포함한 ACT의 중요성이 부각되는 것에 반면, 유치원과 초등학교 저학년을 대상으로 한 소프트웨어 교육은 국외에 비해 많이 부족한 실정이다. 따라서 본 연구에서는 유치원 학생들을 대상으로 하여 패턴 분석을 통한 인공지능 기반 컴퓨팅 사고력 계발을 위한 교재를 설계하고 개발하였다.

생활패턴 인지가 가능한 스마트 레이더 시스템 (Smart Radar System for Life Pattern Recognition)

  • 정상중
    • 융합신호처리학회논문지
    • /
    • 제23권2호
    • /
    • pp.91-96
    • /
    • 2022
  • 현재 카메라 기반 기술 수준으로는 센서 기반 기본 생활패턴 인지 기술은 정확한 데이터를 얻기 위해서는 불편함을 감수해야 하고, 상용화 밴드 제품은 정확한 데이터 수집이 어려우며, 행동의 동기와 원인 및 심리적 영향 등을 고려하지 못하는 실정이다. 본 논문에서는 생활패턴 인지를 위한 레이더 기술은 일상생활에서 주변의 사람이나 물체를 탐지하기 위해 고안된 파형을 전송하여 반사되어 오는 수신 신호를 신호 처리함으로써 물체와의 거리, 속도, 각도를 측정하는 기술을 적용하여 기존 영상 기반의 서비스에서의 사생활 보호와 같은 이슈를 보완할 수 있도록 고안하였다. 제안 시스템의 구현을 위해 TIIWR1642 칩을 기반으로 60GHz 대역 밀리미터파 FMCW 송신/수신을 위한 RF 칩셋제어, 거리/속도/각도 검출을 위한 모듈의 개발 및 신호처리 소프트웨어를 포함한 기술을 구현하였다. 생활 정보에 대한 메타 분석으로 생활패턴의 정량적 분석을 통해 개인별 맞춤형 생활패턴 추출을 통해 자기 관리 및 행동 시퀀스를 산출하여 개인별 생활패턴의 분석이 보안 및 안전 응용서비스로 가능할 것으로 기대된다.

인터넷 채팅 도메인에서의 감성정보를 이용한 타관점 사용자 선호도 학습 방법 (Multi-perspective User Preference Learning in a Chatting Domain)

  • 신욱현;정윤재;맹성현;한경수
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2009
  • 개인화 서비스와 같은 지능정보 시스템을 위해서는 사용자 선호도의 학습은 중요한 연구 분야이다. 본 연구에서는 채팅 도메인에서의 사용자 선호도를 학습하는 방법을 제시하며, 기존의 평면적인 사용자 선호도 모델의 문제점을 해결하기 위한 사용자 선호도 모델을 제안한다. 사용자가 선호도 학습의 대상에 대하여 얼마나 관심이 있는가를 나타내는 관심도와 대상에 대한 감성을 나타내는 호감도 라는 요소로 모델링 할 수 있다. 자연어 처리를 통해 현재 대화에서의 주제 탐지와 호감도 분석을 하고, 이를 이용하여 사용자의 선호도와 호감도를 학습한다. 시간의 흐름에 따라 변하는 사용자 선호도의 특징을 고려하여, 사용자 선호도를 세션, 단기, 장기 선호도로 나누어 계산한다. 사용자선호도 학습의 대상이 되는 키워드와 주제에 대하며 시간에 따라 변하는 사용자의 선호도 변화를 고려하여 선호도 결정을 한다 사용자 선호도 학습 효과의 검증을 위하여 사용자 평가를 하였으며 주제 선호도, 키워드 선호도, 키워드 호감도에 대하여 각각 86.52%, 86.28%, 87.22%의 성능을 보였다.

K-means와 CNN을 활용한 체지방율 분석 모델 설계 및 구현 (Design and Implentation of Body Fat Percentage Analysis Model using K-means and CNN)

  • 이태준;박찬명;김창수;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.329-331
    • /
    • 2021
  • 최근 헬스케어 분야에서 딥러닝을 활용한 다양한 사례가 증가하면서 웨어러블 기기를 통한 심전도 검사, 체성분 분석 등의 기능을 제공하여 합리적인 의사 결정을 제공하여 개인에게 맞는 프로세스를 제공할 수 있다. 딥러닝을 활용하기 위해서는 정제된 데이터 확보가 무엇보다 중요하며 이러한 데이터는 사람의 개입이나 비지도학습 등을 통해 이뤄지고 있다. 본 논문에서는 측정하기 쉬운 가슴둘레, 허리둘레와 같은 치수 데이터를 이용해 성별과 나이에 따른 군집별 비지도학습을 진행하고 이를 CNN으로 분류하는 모델을 제안한다. 데이터는 국가기술표준원에서 제공하고 있는 제7차 인체치수데이터를 활용하였다. 이를 통해 개인 맞춤형 체형관리 서비스나 비만 분석 등 다양한 응용 사례에 적용할 수 있을 것으로 사료된다.

  • PDF

스마트 헬스케어: 미래 병원을 위한 AI, 블록체인, VR/AR 및 디지털 솔루션 구현 (Smart Healthcare: Enabling AI, Blockchain, VR/AR and Digital Solutions for Future Hospitals)

  • ;;;김희철
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.406-409
    • /
    • 2022
  • 최근 몇 년 동안, AI 시스템, 블록체인, VR/AR, 3D 프린팅, 로봇 공학, 나노 기술과 같은 기술의 발전은 바로 우리 눈앞에서 건강 관리의 미래를 재편하고 있습니다. 또한, 의료는 소비자의 요구에 초점을 맞춘 예방 중심의 의학으로 패러다임이 전환되었습니다. Covid-19와 같은 전염병의 확산으로 의료 및 치료 시설의 정의가 변경되어 병원의 물리적 환경을 재설계하고 사회적 거리 두기 요구사항을 해결하도록 통신 모델을 조정하고 가상 의료 솔루션을 구현하고 새로운 임상 프로토콜을 수립하기 위한 즉각적인 조치가 필요하게 되었습니다. 전통적으로 의료 시스템의 허브 역할을 해 온 병원은 이러한 환경에 맞서 스스로를 재정립하는 것을 추구하거나 강요당하고 있습니다. 미래의 건강관리는 질병을 치료하는 것뿐만 아니라 건강과 예방에 초점을 맞출 것으로 예상됩니다. 개인화된 진료에서는 장기적인 예방 전략, 원격 모니터링, 조기 진단 및 탐지가 매우 중요합니다. 이러한 현대 기술로 정의되는 스마트 헬스케어에 대한 관심이 높아짐에 따라, 본 연구는 스마트 헬스케어의 정의와 서비스 종류를 조사했습니다. 스마트 병원의 배경과 기술적 측면도 문헌 검토를 통해 탐구했습니다.

  • PDF

신체활동과 비특이적 목 통증의 재발 -국민건강보험 자료에 기반한 전국 코호트 위험인자 연구- (Physical Activity and Non-specific Neck Pain Recurrence: A Nationwide Cohort Risk Factor Study Based on National Health Insurance Data)

  • 구미란
    • PNF and Movement
    • /
    • 제22권1호
    • /
    • pp.101-111
    • /
    • 2024
  • Purpose: The purpose of this study was to investigate physical activity as a risk factor for neck pain recurrence using the National Health Insurance Data Sharing Service that utilizes a nationwide cohort in South Korea. Methods: Medical records spanning a two-year period were extracted from the National Health Insurance database for 541,937 patients who sought healthcare services for neck pain (ICD 10 codes: M54.2) in 2020 and completed the national health examination survey. Selected variables for analysis included age, gender, health insurance premium decile, regional health vulnerability index, body mass index (BMI), acuity, blood pressure, and types of physical activity. A mixed-effect multivariate logistic regression analysis was conducted to examine the recurrence rate of neck pain and identify risk factors for neck pain recurrence. Results: Among the participants, 124,433 patients (23.0%) experienced a recurrence of neck pain within two years, with higher recurrence rates observed among older individuals and females. Regression analysis revealed that the risk of neck pain recurrence increased with age (OR=1.51), being female (OR= 1.10), being a medical aid recipient (OR=1.51), and having anaerobic (OR=1.04) or vigorous physical activities (OR=1.06). By contrast, an increased health insurance premium decile (OR=0.96) and having moderate physical activity (OR=0.97) were associated with a decreased risk of neck pain recurrence. Conclusion: This study highlights the importance of moderate physical activity as an effective strategy for reducing the recurrence of nonspecific neck pain, underscoring the necessity for personalized physical activity programs for patients.