• Title/Summary/Keyword: Personalized Information Service

Search Result 498, Processing Time 0.03 seconds

Social Commerce Food Coupon Recommending System Based On Context Information Using Bayesian Network (베이지안 네트워크를 이용한 상황정보에 기반을 둔 소셜커머스 음식 쿠폰 추천시스템)

  • Jeong, Hyeon-Ju;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.11 no.3
    • /
    • pp.389-395
    • /
    • 2013
  • More sales of food and beverage coupons have been made using SNS on social commerce recently. If one buys coupons on social commerce, he/she can enjoy products at a lower price; however, there are drawbacks that one must consider such as location, service hours, and discount rate. Thus, this paper suggests a system that recommends food and beverage coupons on social commerce for users that considers a user's personal context of location, time, and purchase history. In order to reflect a user's context awareness and continuous preference, this paper suggests a method based on the Bayesian network. In order to reflect personalized weighting on the standard of coupon selection to match a user's preference, a measurement and classification of weighting preferences is performed on the basis of AHP. 20 experiments in one month involving 12 students were carried out to verify the effectiveness of the system, resulting in an 80% satisfaction level.

Discovery of Behavior Sequence Pattern using Mining in Smart Home (스마트 홈에서 마이닝을 이용한 행동 순차 패턴 발견)

  • Chung, Kyung-Yong;Kim, Jong-Hun;Kang, Un-Gu;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.19-26
    • /
    • 2008
  • With the development of ubiquitous computing and the construction of infrastructure for one-to-one personalized services, the importance of context-aware services based on user's situation and environment is being spotlighted. The smart home technology connects real space and virtual space, and converts situations in reality into information in a virtual space, and provides user-oriented intelligent services using this information. In this paper, we proposed the discovery of the behavior sequence pattern using the mining in the smart home. We discovered the behavior sequence pattern by using mining to add time variation to the association rule between locations that occur in location transactions. We can predict the path or behavior of user according to the recognized time sequence and provide services accordingly. To evaluate the performance of behavior consequence pattern using mining, we conducted sample t-tests so as to verify usefulness. This evaluation found that the difference of satisfaction by service was statistically meaningful, and showed high satisfaction.

Personal Training Suggestion System based on Hybrid App (하이브리드 앱 기반의 개인 트레이닝 추천 시스템)

  • Kye, Min-Seok;Jang, Hyeon-Suk;Jung, Hoe-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1475-1480
    • /
    • 2014
  • Wellness is IT fused with the user manage and maintain the health of a service can help you. If you are using an existing Fitness Center to yourself by choosing appliances that fit with the risk of injury in order to learn how the efficient movement had existed for a long time was needed. To resolve, use the personal training but more expensive cost of people's problems, and shown again in the habit of exercising alone will have difficulty. This paper provides a variety of smart phones based on a hybrid app with compatibility with the platform and personalized training market system. Users of the Fitness Center is built into smart phones in the history of their movement sensors or transmits to the Web by typing directly. This is based on exercise programs tailored to users via the training market. Personal training marketplace has a variety of users, check the history of this movement he can recommend an exercise program for themselves can be applied by selecting the. This provides users with the right exercise program can do long-term exercise habits can be proactive and goal setting.

A Course Scheduling Multi-Agent System For Ubiquitous Web Learning Environment (유비쿼터스 웹 학습 환경을 위한 코스 스케줄링 멀티 에이전트 시스템)

  • Han, Seung-Hyun;Ryu, Dong-Yeop;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.365-373
    • /
    • 2005
  • Ubiquitous learning environment needs various new model of e-learning as web based education system has been proposed. The demand for the customized courseware which is required from the learners is increased. the needs of the efficient and automated education agents in the web-based instruction are recognized. But many education systems that had been studied recently did not service fluently the courses which learners had been wanting and could not provide the way for the learners to study the learning weakness which is observed in the continuous feedback of the course. In this paper we propose a multi-agent system for course scheduling of learner-oriented using weakness analysis algorithm via personalized ubiquitous environment factors. First proposed system analyze learner's result of evaluation and calculates learning accomplishment. From this accomplishment the multi-agent schedules the suitable course for the learner. The learner achieves an active and complete learning from the repeated and suitable course.

  • PDF

The Recommendation System based on Staged Clustering for Leveled Programming Education (수준별 프로그래밍 교육을 위한 단계별 클러스터링 기반 추천시스템)

  • Kim, Kyung-Ah;Moon, Nam-Mee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.51-58
    • /
    • 2010
  • Programming education needs learning which is adjusted individual learners' level of their learning abilities. Recommendation system is one way of implementing personalized service. In this research, we propose recommendation method which learning items are recommended for individual learners' learning in web-based programming education environment by. Our proposed system for leveled programming education provides appropriate programming problems for a certain learner in his learning level and learning scope employing collaborative filtering method using learners' profile of their level and correlation profile between learning topics. As a result, it resolves a problem that providing appropriate programming problems in learner's level, and we get a result that improving leaner's programming ability. Furthermore, when we compared our proposed method and original collaborative filtering method, our proposed method provides the ways to solve the scalability which is one of the limitations in recommendation systems by improving recommendation performance and reducing analysis time.

A Study on the Implementation of Digital Twin Architecture and Detailed Technology for Agriculture and Livestock Industry (농·축산 산업을 위한 디지털 트윈 아키텍처 및 세부 기술 구현에 관한 연구)

  • Jeong, Deuk-Young;Kim, Se-Han;Lee, In-Bok;Yeo, Uk-Hyeon;Lee, Sang-Yeon;Kim, Jun-Gyu;Park, Se-Jun
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.398-408
    • /
    • 2021
  • Since COVID-19, the world's food shortage population has more than doubled from 130 million to 270 million. In addition, as various issues related to the food industry such as climate change arise, the importance of agriculture and livestock is increasing. In particular, it is still difficult to utilize data generated in these field. Therefore, the objective of this study was to explain the limitations of using data based on fragmentary analysis and the necessity of Digital Twin. The additional objective was to propose an architecture and necessary technologies of a Digital Twin platform suitable for agricultural and livestock. It also proposed a Digital Twin-based service that could be used in the near future, such as labor reduction, productivity improvement, personalized consumption, transportation, and distribution by incorporating intelligent information convergence technology into facility horticulture and livestock farming.

Design of Artificial Intelligence Textbooks for Kindergarten to Develop Computational Thinking based on Pattern Recognition. (패턴인식에 기반한 컴퓨팅사고력 계발을 위한 유치원 AI교재 설계)

  • Kim, Sohee;Jeong, Youngsik
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.927-934
    • /
    • 2021
  • AI(Artificial intelligence) is gradually taking up a large part of our lives, and the pace of AI development is accelerating. It is called ACT that develop students' computational thinking in the way artificial intelligence learns. Among ACTs, pattern recognition is an essential factor in efficiently solving problems. Pattern analysis is part of the pattern recognition process. In fact, Netflix's personalized movie recommendation service and what it named Covid-19 after repeated symptoms are all the results of pattern analysis. While the importance of ACT, including pattern recognition, is highlighted, software education for kindergarten and elementary school lower grades is much insufficient compared to foreign countries. Therefore, this study aims to design and develop textbooks for the development of artificial intelligence-based computational thinking through pattern analysis for kindergarten students.

Design and Implentation of Body Fat Percentage Analysis Model using K-means and CNN (K-means와 CNN을 활용한 체지방율 분석 모델 설계 및 구현)

  • Lee, Taejun;Park, Chanmyeong;Kim, Changsu;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.329-331
    • /
    • 2021
  • Recently, as various cases of using deep learning in the health-care field are increasing, functions such as electrocardiogram examination and body composition analysis through wearable device can be provided to provide rational decision-making and a process tailored to the individual. In order to utilize deep learning, it it most important to secure refined data, and this data is being made through human intervention or unsupervised learning. In this paper, we propose a model that conducts unsupervised learning by clusters according to gender and age using human body data such as chest and waist circumferences, which are easy to measure, and classifies them with CNN. For data, the 7th human body data provided by Korean Agency for Technology and Standards was used. Through this, it it thought that it can be applied to various application cases such as personalized body shape management service and obesity analysis.

  • PDF

Smart Healthcare: Enabling AI, Blockchain, VR/AR and Digital Solutions for Future Hospitals (스마트 헬스케어: 미래 병원을 위한 AI, 블록체인, VR/AR 및 디지털 솔루션 구현)

  • Begum, Khadija;Rashid, Md Mamunur;Armand, Tagne Poupi Theodore;Kim, Hee-Cheol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.406-409
    • /
    • 2022
  • In recent years, the developments in technologies, such as AI systems, Blockchain, VR/AR, 3D printing, robotics, and nanotechnology, are reshaping the future of healthcare right before our eyes. And also, healthcare has seen a paradigm shift towards prevention-oriented medicine, with a focus on consumers requirements. The spread of infectious diseases such as Covid-19 have altered the definition of healthcare and treatment facilities, necessitating immediate action to redesign hospitals' physical environments, adapt communication models to address social distancing requirements, implement virtual health solutions, and establish new clinical protocols. Hospitals, which have traditionally served as the hub of healthcare systems, are pursuing or being forced to reestablish themselves against this landscape. Rather than only treating ailments, future healthcare is predicted to focus on wellness and prevention. In personalized care, long-term prevention strategies, remote monitoring, early diagnosis, and detection are critical. Given the growing interest in smart healthcare defined by these modern technologies, this study looked into the definitions and service kinds of smart healthcare. The background and technical aspects of smart hospitals were also explored through a literature review.

  • PDF

Investigating the Influence of Perceived Usefulness and Self-Efficacy on Online WOM Adoption Based on Cognitive Dissonance Theory: Stick to Your Own Preference VS. Follow What Others Said (온라인 구전정보 수용자의 지각된 정보유용성과 자기효능감이 구전정보 수용의도에 미치는 영향에 관한 연구: 의견고수와 구전수용의 비교)

  • Lee, Jung Hyun;Park, Joo Seok;Kim, Hyun Mo;Park, Jae Hong
    • Asia pacific journal of information systems
    • /
    • v.23 no.3
    • /
    • pp.131-154
    • /
    • 2013
  • New internet technologies have created a revolutionary new platform which allows consumers to make decision about product price and quality quickly and provides information about themselves through the transcript of online reviews. By expressing their feelings toward products or services on virtual opinion platforms, users extend their influence into cyberspace as electronic word-of-mouth (e-WOM). Existing research indicates that an impact of eWOM on the consumer decision process is influential. For both academic researchers and practitioners, investigating this phenomenon of information sharing in online website is essential given the increasing number of consumers using them as sources of purchase decisions. It is worthwhile to examine the extent to which opinion seekers are willing to accept and adopt online reviews and which factors encourage adoption. Discerning the most motivating aspects of information adoption in particular, could help electronic marketers better promote their brand and presence on the internet. The objectives of this study are to investigate how online WOM influences a persons' purchase decision by discovering which factors encourage information adoption. Especially focused on the self-efficacy, this research investigates how self-efficacy affects on information usefulness and adoption of online information. Although people are exposed to same review or comment about product or service, some accept the reviews while others do not. We notice that accepting online reviews mainly depends on the person's preference or personal characteristics. This study empirically examines this issue by using cognitive dissonance theory. Specifically, in the movie industry, we address few questions-is always positive WOM generating positive effect? What if the movie isn't the person's favorite genre? What if the person who is very self-assertive so doesn't take other's opinion easily? In these cases of cognitive dissonance, is always WOM generating same result? While many studies have focused on one direct of WOM which indicates positive (or negative) informative reviews or comments generate positive (or negative) results and more (or less) profits, this study investigates not only directional properties of WOM but also how people change their opinion towards product or service positive to negative, negative to positive through the online WOM. An experiment was conducted quantitatively by using a sample of 168 users who have experience within the online movie review site, 'Naver Movie'. Users were required to complete a survey regarding reviews and comments taken from the real movie page. The data reflected user's perceptions of online WOM information that determined users' adoption level. Analysis results provide empirical support for the proposed theoretical perspective. When user can't agree with the opinion of online WOM information, in other words, when cognitive dissonance between online WOM information and users' preference occurs, perceived self-efficacy significantly decreases customers' perception of usefulness. And this perception of usefulness plays an important role in determining users' intention to adopt online WOM information. Most of researches have been concentrated on characteristics of online WOM itself such as quality or vividness of information, credibility of source and direction of online WOM, etc. for describing effect of online WOM, but our results suggest that users' personal character (e.g., self-efficacy) plays decisive role for acceptance of online WOM information. Higher self-efficacy means lower possibility to accept the information that represents counter opinion because of cognitive dissonance, whereas the people that have lower self-efficacy are willing to accept the online WOM information as true and refer to purchase decision. This study suggests a model for understanding role of direction of online WOM information. Also, our result implicates the importance of online review supervision and personalized information service by confirming switching opinion negative to positive is more difficult than positive to negative through the online WOM information. This implication would help marketers to manage online reviews of their products or services.