• 제목/요약/키워드: Personalization recommendation

검색결과 129건 처리시간 0.032초

Personalized Recommendation System for Location Based Service

  • Lee Keumwoo;Kim Jinsuk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.276-279
    • /
    • 2004
  • The location-based service is one of the most powerful services in the mobile area. The location-based service provides information service for moving user's location information and information service using wire / wireless communication. In this paper, we propose a model for personalized recommendation system which includes location information and personalized recommendation system for location-based service. For this service system, we consider mobile clients that have a limited resource and low bandwidth. Because it is difficult to input the words at mobile device, we must deliberate it when we design the interface of system. We design and implement the personalized recommendation system for location-based services(advertisement, discount news, and event information) that support user's needs and location information. As a result, it can be used to design the other location-based service systems related to user's location information in mobile environment. In this case, we need to establish formal definition of moving objects and their temporal pattern.

  • PDF

A Recommendation Procedure for Group Users in Online Communities

  • 오희영;김혜경;김재경
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2006년도 춘계학술대회
    • /
    • pp.344-353
    • /
    • 2006
  • Nowadays many people participate in online communities for information sharing. But most recommender systems are designed for personalization of individual user, so it is necessary to develop a recommendation procedure for group users, such as participants in online communities. This paper proposes a group recommender system to recommend books for group users in online communities. For such a purpose, we suggest a group recommendation procedure consisting of two phases. The first phase is to generate recommendation list for 'big user' using collaborative filtering, and the second phase is to remove irrelevant books among previous list reflecting the preference of each individual user. The procedure is explained step by step with an illustrative example. And this procedure can potentially be applied to other domains, such as music, movies and etc.

  • PDF

온라인 쇼핑몰 데이터를 이용한 개인화 추천 모델 성능 비교 분석 (A Comparative Analysis of Personalized Recommended Model Performance Using Online Shopping Mall Data)

  • 오재동;오하영
    • 한국정보통신학회논문지
    • /
    • 제26권9호
    • /
    • pp.1293-1304
    • /
    • 2022
  • 개인화 추천시스템은 각 개인의 관심사나 선호도를 분석하여 이에 맞는 정보나 제품을 추천해주는 것을 의미한다. 이러한 개인화 추천을 통해 소비자들은 본인에게 필요한 제품들을 보다 빠르게 접함으로써 정보 탐색에 소모하는 시간을 단축할 수 있으며, 기업들은 소비자들의 필요에 맞는 적절한 제품을 추천해줌으로써 기업 이윤을 증가시킬 수 있다. 본 연구에서는 대표적인 개인화 추천 기법들인 협업 필터링, 행렬 요인화, 딥러닝을 사용하여 소비자에게 제품을 추천해준다. 이를 위해 원데이터 (Raw data)인 쇼핑몰 상품 구매 후기 데이터세트를 추천시스템의 입력으로 전달하기 위한 형태로 전처리하고, 전처리한 데이터세트를 다각도로 분석해본다. 또한, 각각의 모델들이 추천한 결과에 대해 검증 및 성능 비교를 수행하고 최적의 성능을 보이는 모델을 탐색하여 이후 해당 쇼핑몰에서 추천시스템 구축 시 어떤 모델을 사용하는 것이 좋을지를 제시한다.

협동적 여과를 기반으로 하는 개인화된 디지털 음악 추천 (Personalized Digital Music Recommendation Based on the Collaborative Filtering)

  • 김준태;김형일
    • 디지털콘텐츠학회 논문지
    • /
    • 제8권4호
    • /
    • pp.521-529
    • /
    • 2007
  • 본 논문에서는 개인의 취향에 맞는 음악을 자동으로 추천해주는 음악 추천 시스템을 소개한다. 본 논문에서 소개하는 추천 시스템은 각 음악 사이의 유사도를 그래프로 저장하는 그래프 기반 협동적 여과 방식을 사용하여 사용자의 암시적 선호 정보를 바탕으로 빠른 추천을 할 수 있으며, 또한 사용자의 정적인 성향뿐 아니라 시간에 따라 달라지는 동적인 성향에 맞는 추천도 가능하도록 설계되었다. 추천 서버는 자바로 구현되었으며 독립된 서버로서 클라이언트와 정해진 프로토콜에 따라 통신하도록 구현되었다. 구현된 추천 서버와 실제 사용자들의 음악 다운로드 데이터를 이용하여 추천 데모 사이트를 구축하였으며, 실험을 통하여 추천 결과의 정확도를 측정하였다.

  • PDF

일대일 웹 마케팅을 위한 디지털콘텐트 추천 시스템 (A Design of a Recommendation System for One to One Web Marketing)

  • 나윤지;고일석;한군희
    • 정보처리학회논문지D
    • /
    • 제11D권7호
    • /
    • pp.1537-1542
    • /
    • 2004
  • 디지털콘텐트는 복제가 용이하고 원본과 복사본이 동일하다는 특성 때문에 불법적인 복제와 유통의 방지를 통한 저작권의 보호에 어려움이 있다. 근래에는 웹을 기반으로 한 각종 디지털콘텐트 서비스 시스템이 상용화되고 있으며, 이것이 안정된 수익 모델로서 발전하기 위하여 적절한 저작권 보호 기술이 요구된다. 일반적으로 웹 기반의 저작권 보호를 위해서는 디지털 콘텐트의 암호화를 통한 안전한 전송 방법을 사용한다. 이때 암호화된 디지털 콘텐트의 크기는 증가하여 실행과정에 필요한 시간을 증가시킨다. 따라서 실행시간과 안전성을 고려한 시스템의 설계가 필요하다. 본 연구에서는, 디지털콘텐트의 저작권 관리 기술을 기반으로 부분 암호화를 통해 수행시간과 안전성을 고려한 디지털콘텐트 전송 시스템을 설계하였다. 또한 분석을 통해 제안시스템의 성능을 평가하였다.

영상 소비 데이터를 기반으로 한 교차 도메인에서 개인 맞춤형 도서 추천 (Personalized Cross-Domain Recommendation of Books Based on Video Consumption Data)

  • 임예빈;김현희
    • 정보처리학회 논문지
    • /
    • 제13권8호
    • /
    • pp.382-387
    • /
    • 2024
  • 최근 성인 독서량은 지속적으로 감소하는데 비해 영상 콘텐츠 소비가 증가하고 있다. 이에 따라 새로운 사용자에 대한 선호도 및 행동 패턴에 대한 정보가 없고 새로운 도서에 대한 사용자 평가나 구매 정보가 부족해 콜드 스타트 문제와 데이터 희소성 문제가 발생하고 있다. 본 논문에서는 영상물 콘텐츠 기반 도서 하이브리드 추천 시스템을 제안하였다. 제안하는 추천 시스템은 영상물의 콘텐츠를 활용하여 콜드 스타트 문제와 데이터 희소성 문제를 해결할 수 있을 뿐만 아니라, 전통적인 도서 추천 시스템에 비해 성능이 향상됨을 보여주었다. 또한 장르, 줄거리, 평점 정보 등 사용자 취향 정보까지 모두 반영한 개인 맞춤형 추천 결과를 제시하였다.

Hybrid Product Recommendation for e-Commerce : A Clustering-based CF Algorithm

  • Ahn, Do-Hyun;Kim, Jae-Sik;Kim, Jae-Kyeong;Cho, Yoon-Ho
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2003년도 춘계학술대회
    • /
    • pp.416-425
    • /
    • 2003
  • Recommender systems are a personalized information filtering technology to help customers find the products they would like to purchase. Collaborative filtering (CF) has been known to be the most successful recommendation technology. However its widespread use in e-commerce has exposed two research issues, sparsity and scalability. In this paper, we propose several hybrid recommender procedures based on web usage mining, clustering techniques and collaborative filtering to address these issues. Experimental evaluation of suggested procedures on real e-commerce data shows interesting relation between characteristics of procedures and diverse situations.

  • PDF

소셜네트워크 기반 음악 추천시스템 (Social Network Based Music Recommendation System)

  • 박태수;정옥란
    • 인터넷정보학회논문지
    • /
    • 제16권6호
    • /
    • pp.133-141
    • /
    • 2015
  • 소셜 네트워크를 비롯해 다양한 소셜 미디어 서비스들에서 대량의 멀티미디어 콘텐츠들이 공유되고 있다. 소셜 네트워크에는 사용자의 현재 상황과 관심사가 드러나기 때문에 이러한 특징들을 추천시스템에 적용한다면 만족도가 높은 개인화된 추천이 가능할 것이다. 또한 음악을 감정에 따라 분류하고 사용자의 소셜 네트워크를 분석해 사용자가 최근 느끼고 있는 감정이나 현재 상황에 대해 분석한 정보를 이용한다면 사용자의 음악을 추천할 때에 유용할 것이다. 본 논문에서는 음악을 분류하기 위한 감정 모델을 만들고, 감정모델에 따라 음악을 분류하여 소셜 네트워크에 나타나는 사용자의 현재 감정 상태를 추출하여 음악추천을 하는 방법을 제안하고 실험을 통해 제안한 방법의 유효성을 검증한다.

Performance Improvement of a Movie Recommendation System based on Personal Propensity and Secure Collaborative Filtering

  • Jeong, Woon-Hae;Kim, Se-Jun;Park, Doo-Soon;Kwak, Jin
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.157-172
    • /
    • 2013
  • There are many recommendation systems available to provide users with personalized services. Among them, the most frequently used in electronic commerce is 'collaborative filtering', which is a technique that provides a process of filtering customer information for the preparation of profiles and making recommendations of products that are expected to be preferred by other users, based on such information profiles. Collaborative filtering systems, however, have in their nature both technical issues such as sparsity, scalability, and transparency, as well as security issues in the collection of the information that becomes the basis for preparation of the profiles. In this paper, we suggest a movie recommendation system, based on the selection of optimal personal propensity variables and the utilization of a secure collaborating filtering system, in order to provide a solution to such sparsity and scalability issues. At the same time, we adopt 'push attack' principles to deal with the security vulnerability of collaborative filtering systems. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the selection of optimal personalization factors and the embodiment of a safe collaborative filtering system.