문장 압축은 원본 문장의 중요한 의미는 유지하면서 길이가 축소된 압축 문장을 생성하는 자연어처리 태스크이다. 문법적으로 적절한 문장 압축을 위해, 초기 연구들은 사람이 정의한 언어 규칙을 활용하였다. 또한 시퀀스-투-시퀀스 모델이 기계 번역과 같은 다양한 자연어처리 태스크에서 좋은 성능을 보이면서, 이를 문장 압축에 활용하고자 하는 연구들도 존재했다. 하지만 언어 규칙을 활용하는 연구의 경우 모든 언어 규칙을 정의하는 데에 큰 비용이 들고, 시퀀스-투-시퀀스 모델 기반 연구의 경우 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 이를 해결할 수 있는 방법으로 사전 학습된 언어 모델인 BERT를 활용하는 문장 압축 모델인 Deleter가 제안되었다. Deleter는 BERT를 통해 계산된 perplexity를 활용하여 문장을 압축하기 때문에 문장 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않다는 장점이 있다. 하지만 Deleter는 perplexity만을 고려하여 문장을 압축하기 때문에, 문장에 속한 단어들의 언어 정보를 반영하여 문장을 압축하지 못한다. 또한, perplexity 측정을 위한 BERT의 사전 학습에 사용된 데이터가 압축 문장과 거리가 있어, 이를 통해 측정된 perplexity가 잘못된 문장 압축을 유도할 수 있다는 문제점이 있다. 이를 해결하기 위해 본 논문은 언어 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 계산에 반영하는 방법을 제안한다. 또한 고유명사가 자주 포함되어 있으며, 불필요한 수식어가 생략되는 경우가 많은 뉴스 기사 말뭉치로 BERT를 fine-tuning하여 문장 압축에 적절한 perplexity를 측정할 수 있도록 하였다. 영어 및 한국어 데이터에 대한 성능 평가를 위해 본 논문에서 제안하는 LI-Deleter와 비교 모델의 문장 압축 성능을 비교 실험을 진행하였고, 높은 문장 압축 성능을 보임을 확인하였다.
To improve performance of sentence speech recognition systems, we need to consider perplexity of language model and the number of words of dictionary for increasing vocabulary size. In this paper, we propose a language model of VCCV units for sentence speech recognition. For this, we choose VCCV units as a processing units of language model and compare it with clauses and morphemes. Clauses and morphemes have many vocabulary and high perplexity. But VCCV units have small lexicon size and limited vocabulary. An advantage of VCCV units is low perplexity. This paper made language model using bigram about given text. We calculated perplexity of each language processing unit. The perplexity of VCCV units is lower than morpheme and clause.
In this paper, we implement a language model by a bigram and evaluate proper smoothing technique for unit of low perplexity. Word, morpheme, clause units are widely used as a language processing unit of the language model. We propose VCCV units which have more small vocabulary than morpheme and clauses units. We compare the VCCV units with the clause and the morpheme units using the perplexity. The most common metric for evaluating a language model is the probability that the model assigns the derivative measures of perplexity. Smoothing used to estimate probabilities when there are insufficient data to estimate probabilities accurately. In this paper, we constructed the N-grams of the VCCV units with low perplexity and tested the language model using Katz, Witten-Bell, absolute, modified Kneser-Ney smoothing and so on. In the experiment results, the modified Kneser-Ney smoothing is tested proper smoothing technique for VCCV units.
본 논문에서는 언어모델의 언어처리 단위로 VCCV(vowel consonant consonant vowel) 단위를 제안하구 기존의 언어처리 단위인 어적 형태소 단위와 비교한다. 어절과 형태소는 어휘수가 많고 높은 복잡도를 가진다. 그러나 VCCV 단위는 작은 사전과 제한된 어휘를 가지므로 복잡도가 적다. 언어모델 구성에 smoothing은 반드시 필요하다. smoothing 기법은 정확한 확률 예측이 불확실한 데이터가 있을 때 더 나은 확률 예측을 위해 사용된다. 본 논문에서는 형태소, 어절, VCCV 단위에 대해 언어모델을 구성하여 복잡도를 계산하였다. 그 결과 VCCV 단위의 복잡도가 형태소나 어절보다 적게 나오는 것을 볼 수 있었다. 복잡도가 적게 나온 VCCV를 기반으로 N-gram을 구성하고 Katz. Witten-Bell, absolute, modified Kneser-Ney smoothing 등의 방법을 이용한 언어 모델에 대해 평가하였다. 그 결과 VCCV 단위의 언어모델에 적합한 smoothing 기법은 modified Kneser-Ney 방법으로 평가되었다.
유의어 추천을 구현하기 위해서는 각 단어 사이의 유사도를 계산하는 것이 필수적이다. 하지만, 기존의 단어간 유사도를 계산하는 여러 방법들은 데이터셋에 등장하지 않은 단어에 대해 유사도를 계산 할 수 없다. 이 논문에서는 이를 해결하기 위해 언어모델의 PPL을 활용하여 단어간 유사도를 계산하였고, 이를 통해 유의어를 추천했을 때 MRR 41.31%의 성능을 확인했다.
알츠하이머병 치매와 조현병 진단을 위한 2단계 분류 모델을 제안한다. 정상군과 환자군의 발화에 나타난 페어 언어 모델 간의 Perplexity 차이에 기반한 분류와 기존 단일 BERT 모델의 미세조정(fine-tuning)을 이용한 분류의 통합을 시도하였다. Perplexity 기반의 분류 성능이 알츠하이머병, 조현병 모두 우수한 결과를 보임을 확인 하였고, 조현병 분류 모델의 성능이 소폭 증가하였다. 향후 설명 가능한 인공지능 기법을 적용에 따른 성능 향상을 기대할 수 있었다.
정보의 증가 속에서 학문 연구의 환경은 지속적으로 변화하고 있으며, 이에 따라 대량의 문서를 효과적으로 분석하는 방법의 필요성이 대두된다. 본 연구에서는 BART(Bidirectional and Auto-Regressive Transformers) 기반의 문서 요약 모델을 사용하여 텍스트를 정제하여 핵심 내용을 추출하고, 이를 LDA(Latent Dirichlet Allocation) 알고리즘을 통한 토픽 모델링의 성능 향상 방법을 제시한다. 이는 문서 요약을 통해 LDA 토픽 모델링의 성능과 효율성을 향상시키는 접근법을 제안하고 실험을 통해 검증한다. 실험 결과, 논문 데이터를 요약하는 BART 기반 모델은 Rouge-1, Rouge-2, Rouge-L 성능 평가에서 각각 0.5819, 0.4384, 0.5038의 F1-Score를 나타내어 원문의 중요 정보를 포착하고 있음을 보인다. 또한, 요약된 문서를 사용한 토픽 모델링은 Perplexity 지표를 통한 성능 비교에서 원문을 사용한 토픽 모델링의 경우보다 약 8.08% 더 높은 성능을 보인다. 이는 토픽 모델링 과정에서 데이터 처리량의 감소와 효율성 향상에 기여한다.
본 연구는 기계학습 기법 중 토픽 모델링을 활용하여 건설현장에서 발생하는 추락재해에 대한 토픽을 분류하고 각 토픽에 따른 재해요인을 분석하였다. 잠재 디리클레 할당 기반의 토픽 모델링을 적용하기 위해 텍스트 데이터의 전처리를 하였고 Perplexity 점수로 평가하여 모형의 신뢰성을 높였다. 각 토픽에서 공통으로 도출된 추락재해의 대부분은 소규모 사업장에 속한 일용직 작업자들에게 발생하였다. 추락재해의 대부분의 원인은 안전장비 미착용, 현장 정리 정돈 미흡, 안전장비의 성능 및 착용 상태로 인해 제대로 작동하지 않은 것으로 판단되었다. 추락재해를 예방하고 절감하기 위해서는 소규모 사업장에 맞는 안전교육과 작업장의 정리 정돈과 개인 안전장비의 적절한 착용 상태 및 성능을 확인하는 것이 중요한 것으로 도출되었다.
문장 압축은 원본 문장의 중요한 의미를 보존하는 짧은 길이의 압축 문장을 생성하는 자연어처리 태스크이다. 문장 압축은 사용자가 텍스트로부터 필요한 정보를 빠르게 획득할 수 있도록 도울 수 있어 활발히 연구되고 있지만, 기존 연구들은 사람이 직접 정의한 압축 규칙이 필요하거나, 모델 학습을 위해 대량의 데이터셋이 필요하다는 문제점이 존재한다. 사전 학습된 언어 모델을 통한 perplexity 기반의 문장 점수 측정을 통해 문장을 압축하여 압축 규칙과 모델 학습을 위한 데이터셋이 필요하지 않은 연구 또한 존재하지만, 문장 점수 측정에 문장에 속한 단어들의 의미적 중요도를 반영하지 못하여 중요한 단어가 삭제되는 문제점이 존재한다. 본 논문은 언어 정보 중 품사 정보, 의존관계 정보, 개체명 정보의 중요도를 수치화하여 perplexity 기반의 문장 점수 측정에 반영하는 방법을 제안한다. 또한 제안한 문장 점수 측정 방법을 활용하였을 때 문장 점수 측정 기반 문장 압축 모델의 문장 압축 성능이 향상됨을 확인하였으며, 이를 통해 문장에 속한 단어의 언어 정보를 문장 점수 측정에 반영하는 것이 의미적으로 적절한 압축 문장을 생성하는 데 도움이 될 수 있음을 보였다.
본 연구에서는 "4차 산업"과 관련된 논문들의 세부 연구 주제를 파악하기 위하여 텍스트 마이닝 기법을 이용하여 논문들을 분석하였다. 이를 위하여 2016년부터 2019년까지 한국학술지인용색인(KCI)에서 "4차 산업"이라는 키워드로 논문을 검색하여 총 685편의 논문을 수집하였다. 논문 수집을 위해서는 Python 기반의 웹 스크랩핑 프로그램을 사용하였으며, 자료 분석을 위해서는 R 언어로 구현된 LDA 알고리즘 기반의 토픽 모델링 기법들을 활용하였다. 수집된 논문들에 대한 Perplexity 분석 결과, 9가지 토픽이 최적으로 결정되었고 수집된 논문들의 9가지 대표 토픽들을 Gibbs 샘플링 방법을 사용하여 추출하였다. 분석 결과, 인공지능, 빅데이터, 사물인터넷, 디지털, 네트워크 등이 상위 주요 기술들로 나타났으며, 산업, 정부, 교육 현장, 일자리 등 4차 산업과 관련한 다양한 분야에서 주요 기술들로 인한 변화에 대한 연구들이 이루어져 왔음을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.